

# MATH 407 Problem Set 3

Qilin Ye

February 11, 2021



**Remark.** For simplicity of notation, I will denote *permutation* and *combination* of  $n$  choose  $r$  by

$$P_n^r := \frac{n!}{(n-r)!} \text{ and } C_n^r := \frac{n!}{r!(n-r)!}, \text{ respectively.}$$

## Chapter 1 Problems

Prob.1.8 If a word of length  $n$  has no repeating letters then the answer is simply  $n!$ . If, say, a letter appears twice in the word, then one should divide the factorial by  $2!$  because order of identical letters doesn't matter. Now back to the question: *Fluke* simply has  $5! = 120$  arrangements. *Purpose* has a pair of *p* and a pair of *o* so the answer is  $7!/(2!2!) = 1260$ . *Mississippi* has four *i*'s, four *s*'s, and a pair of *p*. Its total length is 11. The answer is therefore  $11!/(4!4!2!) = 34650$ . *Arrange* is the same as *Purpose*.

Prob.1.10

- Simply  $8! = 40320$ .
- There are 14 ways to arrange these two people. The other 6 can sit freely once *A* and *B* have sat down. The answer is  $14 \cdot 6! = 10080$ .
- If men sit at odd numbers then we have  $4! \cdot 4!$  arrangements. If women sit at odd numbers we have another  $4! \cdot 4!$ . Thus the total number is  $2 \cdot 4! \cdot 4! = 1152$ .
- $5! = 120$  ways to arrange the 5 men. Then the rest can sit freely.  $5! \cdot 3! = 720$ .
- Treating each couple as a “block” first, we have 4 blocks and 24 arrangements for these blocks. Within each block there are 2 possibilities.  $24 \cdot 2^4 = 384$ .

Prob.1.11

- $6! = 720$ .
- Use the “block” strategy again:  $3! \cdot (1!2!3!) = 72$ .
- Still the “block” strategy but with 4 blocks (one for novels, one for each remaining book):  $4!3! = 144$ .

Prob.1.15 This is equivalent to saying “how many pairs between 20 people can be made”, of which the answer is  $C_{20}^2 = 190$ .

Prob.1.23 This is equivalent to asking how many arrangements of 4 *R*'s and 3 *U*'s are there, of which the answer is  $C_7^3 = 35$ .

Prob.1.26

- (a) Consider a set of  $n$  elements, all of which are to be numbered 1, 2 or 3. There should be a total of  $3^n$  ways to do so. On the other hand, we can start case by case, based on how many elements are to be numbered 3. Say  $n - k$ . Then there are  $C_n^{n-k} = C_n^k$  ways to pick these elements, and for the rest  $k$  elements, each is to be numbered either 1 or 2, resulting in  $2^k$  ways. Hence in each case we have  $C_n^k \cdot 2^k$  ways, and letting  $k$  vary between 0 and  $n$ , inclusive, gives the equality.
- (b)  $(x+1)^n$ , similar reasoning as above: simply replace  $\{1, 2, 3\}$  by  $\{1, 2, \dots, x+1\}$ .

Prob.1.33 We first treat England and France as a “block” and ignore Russia and U.S. Then we have 7 entities that are to be randomly arranged, resulting in  $7!$  options. Now within the Anglo-French block there are  $2! = 2$  ways to arrange. Finally, let the Russian and American come. These 7 entities create 8 spaces for these two to choose, and since order matters, there are  $P_8^2 = 56$  options. Multiplying everything together we get  $7! \cdot 2 \cdot 56 = 564480$  ways.

## Chapter 1 Theoretical Exercises

Ex.1.8 (*Vandermonde's Identity*.) **Assuming  $r \leq \min\{m, n\}$** , choosing  $r$  elements from a total of  $m + n$  is equivalent to choosing  $k$  elements from  $m$  and  $r - k$  from  $n$  where  $0 \leq k \leq r$ . Hence

$$\binom{m+n}{r} = \sum_{k=0}^r \binom{n}{k} \binom{m}{r-k}.$$

Ex.1.9 This problem follows from (8) by realizing that  $\binom{n}{k} = \binom{n}{n-k}$ . Then

$$\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^n \binom{n}{k}^2.$$

Ex.1.11 The number of subsets of  $k$  elements with  $i$  as the largest index is  $\binom{i-1}{k-1}$  (since one element is determined). The index  $i - 1$  can range from  $k - 1$  to  $n - 1$  and thus

$$\binom{n}{k} = \sum_{i=k}^n \binom{i-1}{k-1}.$$

Ex.1.12

- (a) There are  $n$  ways to pick a chairperson and, for the remaining  $n - 1$  people, each can be either chosen or not, hence the quantity  $n \cdot 2^{n-1}$ . On the other hand, we can also get the same result by first fixing a  $k \in [1, n]$ . Choosing  $k$  people to form a group out of  $n$  people gives  $C_n^k$  options, whereas choosing one chairperson among this group gives  $k$  options. Multiplying them together, and letting  $k$  index through 1 to  $n$  gives the other side of the equation.

(b) On one hand, for a group of  $k$  people, there will be  $\binom{n}{k}k^2$  ways, where the  $k^2$  comes from picking two people from the group without replacement. On the other hand, if the chairperson and the secretary are the same, there are  $n2^{n-1}$  ways to form a group, where  $n$  comes from randomly selecting a chairperson / secretary, and  $2^{n-1}$  comes from putting or not putting any remaining person into the group. If the chairperson and the secretary are by different people, then there are  $n(n-1)$  ways to choose these two, after which there are  $2^{n-2}$  ways to decide if the remaining  $n-2$  will join the group. Hence the number  $n(n-1)2^{n-2}$ . Adding them together, we have

$$n2^{n-2} + n(n-1)2^{n-2} = n(n+1)2^{n-2}.$$

(c) Now we want to choose a committee of arbitrary size out of  $n$  people and choose three special roles (chair, secretary, and vice-chair, say), and we allow the same person to have more than one role. On onehand, for such a committee of  $k$  people we have  $k^3C_n^k$  options, so letting  $k$  vary gives a total of

$$\sum_{k=1}^n \binom{n}{k} k^3.$$

On the other hand, if all three roles are assigned to the same person, there are  $n2^{n-1}$  possibilities. If one person holds two and someone else holds the third, there are  $3n(n-1)2^{n-2}$  possibilities. If three roles are held by 3 different people, there are  $n(n-1)(n-2)2^{n-3}$  ways. Adding them together we have

$$n2^{n-1} + 3n(n-1)2^{n-2} + n(n-1)(n-2)2^{n-3} = 2^{n-3}n^2(n+3)$$

possibilities. Since the two sides must equal, we have derived the equality we are asked to show.

Ex.1.18 Indeed, let the  $n^{\text{th}}$  element be picked first. It has to belong to one of the members of the partitions, say  $n_i$ . Then with the assumption that this  $n^{\text{th}}$  element belongs to  $n_i$  we have

$$\binom{n}{n_1, \dots, n_r} = \binom{n-1}{n_1, \dots, n_i-1, \dots, n_r}.$$

Since this  $n^{\text{th}}$  element can also be in other partition members, we let  $i$  range through 1 to  $r$  and obtain the sum:

$$\binom{n}{n_1, \dots, n_r} = \sum_{i=1}^r \binom{n-1}{n_1, \dots, n_i-1, \dots, n_r}.$$

## Chapter 1, Self Test Problems

### Prob.1.11

(a)  $C_{10}^6 \cdot 2^6 = 13440$  where the binomial coefficient comes from picking 6 out of 10 and  $2^6$  comes from picking either the man or the woman from each couple.

(b) The first term is still  $C_{10}^6$ . Once we've decided which couples to pick from, we have  $C_6^3 = 20$  ways to decide from which three couples do these three men come from (so the remaining three must be women). The answer is therefore  $C_{10}^6 \cdot C_6^3 = 4200$ .

Prob.1.12 A committee of 6 people with at least 3 women and 2 men is a very strong restriction. We have thus only two possibilities to consider.

(1) 4 women and 2 men:  $C_8^4 \cdot C_7^2$  ways.  
 (2) 3 women and 3 men:  $C_8^3 \cdot C_7^3$  ways.

They together provide 3430 ways.

Prob.1.17

(a) Analytic:

$$\begin{aligned} \binom{k}{2} + k(n-k) + \binom{n-k}{2} &= \frac{k(k-1)}{2} + k(n-k) + \frac{(n-k)(n-k-1)}{2} \\ &= \frac{k^2 - k + 2kn - 2k^2 + n^2 - 2nk + k^2 - n + k}{2} \\ &= \frac{n^2 - n}{2} = \frac{n(n-1)}{2} = \binom{n}{2}. \end{aligned}$$

(b) Combinatorial: to pick 2 elements from a group of  $n$  elements, one can either pick both from the first  $k$  elements, giving  $C_k^2$  options, or pick both from the last  $n-k$  elements, giving  $C_{n-k}^2$  options, or pick one from the first  $k$  and one from the remaining  $n-k$ , giving  $k(n-k)$  options.

Prob.1.21 Notice that

$$0 = ((-1) + 1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k = (-1) \sum_{k=0}^n \binom{n}{k} (-1)^{k+1}.$$

Adding 1 to the LHS and removing the term  $k=0$  gives our desired equality

$$\sum_{k=1}^n (-1)^{k+1} \binom{n}{k} = 1.$$

## Chapter 2, Problems

Ch.2.15

(a) 4 ways to choose the suit and  $C_{13}^5$  ways to choose the denominations. Hence there are  $4 \cdot C_{13}^5$  ways out of  $C_{52}^5$  ways, i.e.,  $P = 4 \cdot C_{13}^5 / C_{52}^5$ .

(b) 13 ways to choose the denominator of the pair.  $C_4^2$  combinations of suits within the pair.  $C_{12}^3$  ways to choose  $b, c, d$ , and  $4^3$  ways to choose their suits.  $P = 13 \cdot 4^3 \cdot C_4^2 C_{12}^3 / C_{52}^5$ .

(c)  $C_{13}^2$  ways to choose the denominator of the pairs;  $C_4^2$  ways of choosing suits for each pair. 11 ways to choose the remaining  $c$  and 4 ways for its suit. Hence  $P = 44 \cdot C_{11}^2 (C_4^2)^2 / C_{52}^5$ .

(d) 13 ways to choose the denominator of the triplet;  $C_4^3$  ways for the suits.  $C_{12}^2$  ways to choose the remaining denominators with  $4^2$  suits.  $P = 4^2 \cdot 13 \cdot C_{12}^2 C_4^3 / C_{52}^5$ .

(e) 13 ways to choose the denominator of the quadruplet and the  $C_4^4 = 1$  way to choose the suit.  $12 \cdot 4 = 48$  ways to choose the remaining card.  $P = 13 \cdot 48 / C_{52}^5$ .

Prob.2.40

(a) Consider the complement: no ball is green, which there are  $C_{15}^4$  possibilities. Hence  $P = 1 - C_{15}^4 / C_{22}^4$ .

(b) Note that we only pick 4 balls and one of each four colors must be chosen. Hence we directly have the total number of possibilities:  $4 \cdot 5 \cdot 6 \cdot 7$ . Divide this by  $C_{22}^4$  to get the probability.