

# MATH 407 HW6

Qilin Ye

March 4, 2021

## Ch.4 Problems

4.19 The probably mass function is given by  $p(0) = 1/2, p(1) = 1/10, p(2) = 1/5, p(3) = 1/10, p(3.5) = 1/10$ , and 0 for all other  $x \in \mathbb{R}$ .

## Ch.4 Theoretical Exercises

4.10

$$\begin{aligned}
 E[1/(X+1)] &= \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k} p^k (1-p)^{n-k} \\
 &= \sum_{k=0}^n \frac{n!}{(n-k)!(k+1)!p} \cdot p^{k+1} (1-p)^{n-k} \\
 &= \frac{1}{(n+1)p} \sum_{k=1}^{n+1} \frac{(n+1)!}{(n+1-k)!k!} [p^k (1-p)^{n+1-k}] \\
 &= \frac{1}{(n+1)p} \cdot (1 - (1-p)^{n+1}).
 \end{aligned}$$

4.28 Since  $X$  is a geometric random variable, the sequence  $\{p_n\}$  defined by  $p_n := P(X = n)$  form a geometric sequence, and the relative ratio between  $p_n$  and  $p_m$  depends only on how far are they away from each other, i.e.,  $|m - n|$ , not where  $m$  and  $n$  are exactly. Therefore the probability of  $X = n + k$  given  $X > n$  is the same as the probability of  $X = (n + k) - n$  given  $X > (n - n)$ , as long as they both sense, which they indeed do (and the latter is simply “the probability of  $X = k$ ”, since “ $X > n - n = 0$ ” is vacuously true).

$$\begin{aligned}
 P(X = n + k \mid X > n) &= P(X = n + k) / P(X > n) \\
 &= p(1-p)^{n+k-1} / \sum_{i=n}^{\infty} p(1-p)^i \\
 &= p(1-p)^{n+k-1} / [p(1-p)^n / p] \\
 &= p(1-p)^{k-1} = P(X = k).
 \end{aligned}$$

4.30 Assuming the parameters are  $n, N, m$ :

$$\begin{aligned}
 P(X = k+1) / P(X = k) &= \left[ \binom{m}{k+1} \binom{N-m}{n-k-1} \binom{N}{n} \right] / \left[ \binom{m}{k} \binom{N-m}{n-k} \binom{N}{n} \right] \\
 &= \left[ \frac{m!}{(k+1)!(m-k-1)!} \frac{k!(m-k)!}{m!} \right] \left[ \frac{(N-m)!}{(N-m-n+k+1)!(n-k-1)!} \frac{(N-m-n+k)!(n-k)!}{(N-m)!} \right] \\
 &= \frac{m-k}{k+1} \cdot \frac{n-k}{N-m-(n-k-1)}.
 \end{aligned}$$

4.37 (a) To have an event where  $X + Y$  evaluates to  $z_k$  we need some  $\tilde{x} \in \{x_i\}, \tilde{y} \in \{y_i\}$  such that  $\tilde{x} + \tilde{y} = z_k$ . Summing all possible scenarios together we have the desired equality.

(b)

$$\begin{aligned}
 E[X + Y] &= \sum_{\tilde{z} \in \{z_k\}} [\tilde{z} \cdot P(X + Y = \tilde{z})] \\
 &= \sum_{\tilde{z} \in \{z_k\}} \left[ \tilde{z} \cdot \sum_{(i,j) \in A_k} P(X = x_i, Y = y_j) \right] \\
 &= \sum_{\tilde{z} \in \{z_k\}} \sum_{(i,j) \in A_k} [\tilde{z} \cdot P(X = x_i, Y = y_i)] \\
 &= \sum_{\tilde{z} \in \{z_k\}} \sum_{(i,j) \in A_k} [(x_i + y_j) P(X = x_i, Y = y_j)].
 \end{aligned}$$

(c) Bad notation, but  $\{x_i\}, \{y_j\}, \{z_k\}$  denote the possible values of  $X, Y$ , and  $X + Y$ .  $A = \{(i,j) \mid x_i + y_j = z_k, z_k \in \{z_k\}\}$  and let  $B = \{(i,j) \mid x_i \in \{x_i\}, y_j \in \{y_j\}\}$ . If  $(i,j) \in B$  then by definition  $x_i + y_j = z_k$  for some  $z_k \in \{z_k\}$  and thus  $B \subset A$ . If  $(i,j) \in A$  then clearly  $x_i \in \{x_i\}, y_j \in \{y_j\}$ . Therefore  $A = B$  and the two ways to write indices are equivalent.

(d)

$$P(X = x_i) = P(X = x_i, Y \in \mathbb{R}) = P(X = x_i, Y \in \{y_j\}) = \sum_{y_j \in \{y_j\}} P(X = x_i, Y = y_j)$$

where the last step is true since the events are pairwise disjoint when we let  $y_j$  vary.

(e) This I believe has already been shown in class twice.

$$\begin{aligned}
 E[X + Y] &= \sum_{x_i \in \{x_i\}} \sum_{y_j \in \{y_j\}} (x_i + y_j) P(X = x_i, Y = y_j) \\
 &= \sum_{x_i \in \{x_i\}} \sum_{y_j \in \{y_j\}} x_i \cdot P(X = x_i, Y = y_j) + \sum_{x_i \in \{x_i\}} \sum_{y_j \in \{y_j\}} y_j \cdot P(X = x_i, Y = y_j) \\
 &= \sum_{x_i \in \{x_i\}} x_i \sum_{y_j \in \{y_j\}} P(X = x_i, Y = y_j) + \sum_{y_j \in \{y_j\}} \sum_{x_i \in \{x_i\}} y_j \cdot P(X = x_i, Y = y_j) \\
 &= \sum_{x_i \in \{x_i\}} x_i P(X = x_i) + \sum_{y_j \in \{y_j\}} y_j \sum_{x_i \in \{x_i\}} P(X = x_i, Y = y_j) \\
 &= \sum_{x_i \in \{x_i\}} x_i P(X = x_i) + \sum_{y_j \in \{y_j\}} y_j P(Y = y_j) \\
 &= E[X] + E[Y].
 \end{aligned}$$