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Problem 4.46 For 3 examiners, the student needs two passes out of three. For the 1/3 probability for an on day,
the probability that he/she passes is

P (2 passes) + P (3 passes) = 3 ⋅ 0.82 ⋅ 0.21 + 0.83 = 0.896.

For the 2/3 probability for an off day, the probability that he/she passes is

P (2 passes) + P (3 passes) = 3 ⋅ 0.42 ⋅ 0.6 + 0.43 = 0.352.

Therefore the total probability of passing with 3 examiners is

1

3
⋅ 0.896 + 2

3
⋅ 0.352 ≈ 0.533.

For 5 examiners, the student needs three passes out of 5. For the 1/3 probability for an on day, the probability
that he/she passes is

P (3) + P (4) + P (5) = C2
5 ⋅ 0.83 ⋅ 0.22 + 5 ⋅ 0.84 ⋅ 0.2 + 0.85 = 0.9428,

and for the 2/3 probability for an off day, the probability that he/she passes is

P (3) + P (4) + P (5) = C2
5 ⋅ 0.43 ⋅ 0.62 + 5 ⋅ 0.44 ⋅ 0.6 + 0.45 ≈ 0.3174.

Therefore the total probability of passing with 5 examiners is

1

3
⋅ 0.9428 + 2

3
⋅ 0.3174 ≈ 0.5259.

It follows that this student should choose the one with 3 examiners.
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(b) More computations:

E[X] =
∞
∑
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(c) Even more computations:

E[X2] =
∞
∑
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∞
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.

Let an denote the nth term of the series above. Applying the ratio test gives

lim sup
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so the series diverges and E[X2] =∞.

Theoretical Ex 4.20
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∞
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Therefore,

E[X3] = λE[(X + 1)2]

= λ(E[X2] + 2E[X] + 1)

= λ(λE[(X + 1)] + 2E[X] + 1)

= λ(λ(λ + 1) + 2λ + 1)

= λ3 + 3λ2 + λ.

Self-test 4.20 Let X be a geometric random variable with parameter p, i.e., P (X = x) = (1 − p)x−1p. Then,
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