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Ex.5.16 Suppose X ~ N(p,0?). Immediately we see that P(X < 1.8-10°) = P(X > 3.2-10°) so the mean must be
precisely the midpoint, i.e., i = 2.5-10°. Now we look up the value 1-0.25 = 0.75 in the distribution table and
find that, for a standard normal, P(X > 0.675) ~ 0.75. Therefore the standard distribution is approximately
(3.2-10° - 2.5-10°)/0.675 = 1.04 - 10°.

(a) X <2-10° corresponds to Z < (2-10° - 2.5-10%)/(1.04-10°) == Z < -0.482. Thus
P(Z <-0.482) = P(Z >0.482) =1 - P(Z < 0.482) ~ 1 - 0.68439 = 0.31561.
(b) 2.8-10° < X <3.2-10° corresponds to 0.3/1.04 < Z < 0.7/1.04. Thus
P(0.289 < Z < 0.675) = ®(0.675) — $(0.289) ~ 0.75 — 0.61 = 0.14.

Ex.5.21 0 =2.5. 6’2 is 74 inches, so it’s 3/2.5 = 1.20 more than the mean. So P(Z >1.2) =1-P(Z < 1.2) ~ 0.11507.
6’5 is 77 inches, 6/2.5 = 2.40 more than the mean. Then P(Z >2.4) =1 - P(Z < 2.4) ~ 0.0082. Conditioning
it over the percentage of the 6-footer club members (which is 1/2.5 = 0.40 above mean) we get

P(Z>24AZ>04)  0.0082
P(Z>0.4) © 1-0.6554

P(Z>24|Z>04) = =0.024.

T.Ex.5.15 The cdf of ¢X, should it be well-defined, is
Foo(z) = P({cX <z}) = P({X < x/c}) = 1 - /¢
which indeed is the cdf of the exponential r.v. with parameter A\/c.

S.T. 5.23 (a) Clear enough, f(z) >0 for all x as exp(-) is always positive. It remains to check that the integral of
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f(z) evaluates to 1:
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S.T.5.24 Given 0 > 0, it is clear that f(z) > 0 for all z > 0 as exp(-) > 0 as well. It remains to check f flz)da=1:
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For the mean,
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Similarly, we first compute E[X?] before computing the variance:
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Therefore
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Var(X) = E[X?] - E[X]* =



