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Ex.5.16 Suppose X ∼ N(µ,σ2). Immediately we see that P (X < 1.8 ⋅ 105) = P (X > 3.2 ⋅ 105) so the mean must be
precisely the midpoint, i.e., µ = 2.5 ⋅105. Now we look up the value 1−0.25 = 0.75 in the distribution table and
find that, for a standard normal, P (X > 0.675) ≈ 0.75. Therefore the standard distribution is approximately
(3.2 ⋅ 105 − 2.5 ⋅ 105)/0.675 = 1.04 ⋅ 105.

(a) X < 2 ⋅ 105 corresponds to Z < (2 ⋅ 105 − 2.5 ⋅ 105)/(1.04 ⋅ 105) Ô⇒ Z < −0.482. Thus

P (Z < −0.482) = P (Z > 0.482) = 1 − P (Z < 0.482) ≈ 1 − 0.68439 = 0.31561.

(b) 2.8 ⋅ 105 <X < 3.2 ⋅ 105 corresponds to 0.3/1.04 < Z < 0.7/1.04. Thus

P (0.289 < Z < 0.675) = Φ(0.675) −Φ(0.289) ≈ 0.75 − 0.61 = 0.14.

Ex.5.21 σ = 2.5. 6′2 is 74 inches, so it’s 3/2.5 = 1.2σ more than the mean. So P (Z > 1.2) = 1−P (Z < 1.2) ≈ 0.11507.
6′5 is 77 inches, 6/2.5 = 2.4σ more than the mean. Then P (Z > 2.4) = 1 − P (Z < 2.4) ≈ 0.0082. Conditioning
it over the percentage of the 6-footer club members (which is 1/2.5 = 0.4σ above mean) we get

P (Z > 2.4 ∣ Z > 0.4) = P (Z > 2.4 ∧Z > 0.4)
P (Z > 0.4)

= 0.0082

1 − 0.6554
= 0.024.

T.Ex.5.15 The cdf of cX, should it be well-defined, is

FxC(x) = P ({cX < x}) = P ({X < x/c}) = 1 − e−λx/c

which indeed is the cdf of the exponential r.v. with parameter λ/c.

S.T. 5.23 (a) Clear enough, f(x) > 0 for all x as exp(⋅) is always positive. It remains to check that the integral of
f(x) evaluates to 1:
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(b) Simple.
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S.T.5.24 Given θ > 0, it is clear that f(x) > 0 for all x > 0 as exp(⋅) > 0 as well. It remains to check ∫
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f(x) dx = 1:
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For the mean,

E[X] = θ2
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Similarly, we first compute E[X2] before computing the variance:
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Therefore

Var(X) = E[X2] −E[X]2 = 2(θ + 3)
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