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Chapter 1

Discrete Random Variables, DRVs

Beginning of March 15, 2021

1.1 Geometric Random Variables

Random experiment with repeated, independent Bernoulli trials with the probability of success p.

The Geometric random variable X describes the number of trials until (and including) the first success, and

we write X ~ G(p).

R(X)={1,2,3,...} with Px(z) = P(X =z) = (1-p)®!p. The cumulative distribution function (cdf) is a piecewise,

monotone increasing function with limit 1 but never reaches it.

Mean, Variance, and MGF

The mean of G(p) = 1/p. Intuitively, if each independent Bernoulli trial has as probability of success p, it takes 1/p

trials to get one success.

[} [} [e)

ux=E[X]=21IP(1‘ =Z z(1p-)""'p = pZ}l z(1-p)"
=p§—f(1—p) —p[Z(l p)] (39[(1_]))—1]
—pdif -p(-1/p°) =

The variance of G(p) is (1-p)/p*.
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o% =var[X] = E[X?] - E[X]?
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The MGF is
ox(t) = E[e"™] Z e P(x)

t (1 p)a: 1
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= petm notice that |e’(1-p)| < 1 locally
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1.2 Negative Binomial Random Variables

A generalization of the geometric random variable, not that of a binomial random variable. This describes the

random experiment of a repeated, independent Bernoulli trials with probability of success p.

X describes the number of trials to get r successes. We write X ~ NB(r,p).
It follows that R(X) = {r,r+1,...}, and

Py(z)= P(X =) - (“’” i) -1 (1_p)<x—1>—<r—1>p:(i:i)pr(l_p)m,r

since if we need precisely x trials to get r successes, then there must be precisely r — 1 successes in the first x — 1
trials, and the '™ trial itself must be a success.

Note that X ~ NB(1,p) — X ~ G(p).
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Mean, Variance, and MGF

The mean of NB(r,p) is r/p. Let X; be the number of trials to get another success after already having i — 1

successes. Then X; ~ G(p), and more importantly the X;’s are independent. Therefore,

ox=E[X]=E [Z XZ] =Y E[Xi] = -
i=1 i=1 p
The variance of X can be computed similarly, and 0% = var[X] =r(1 - p)/p*.

The MGF is

ox(t) = E[e"*] = E[exp(t }.)]

E[etXi]

—-

—

_pet )
\1-et(l-p))

1.3 Poisson Distribution

The Poisson distribution is similar to binomial distribution, but the probability of success becomes a rate applied
to a continuum as opposed to discrete selections.

Let a time interval of length 1 be given. Previously, without the concept of continuum, we divide this interval
into n subintervals of length 1/n and perform independent Bernoulli trails on each one. Let the assumption be
that the mean total number of successes among these n Bernoulli trials is A\. Then it immediately follows that the
probability of success for each subinterval is A/n (so that n-A/n=X\).

We fix this A but let n — oo, namely dividing the interval into finer and finer subintervals of length 1/n. What does
the limit mean? It means we are on a continuum [0, 1] where each x € [0,1] resembles a “Bernoulli trial”, such that
the mean/expected number of total successes for all z € [0,1] is A. Of course, as n — oo, A\/n — oo and the previous
definitions no longer make sense. Therefore, the Poisson distribution can be interpreted as a limit that consists of
infinitely many Bernoulli trials.

Done with the heuristics, now we begin from finite cases (Bernoulli trials) and start the approximation. Suppose
we have n independent Bernoulli trails. This naturally gives rise to a binomial distribution with parameters n and

A/n. Let X,, be B(n,\/n). Then

Py () - (’;)(A/n)m )
n! AT

B (n—-2z)laz! n®

=2y

(1-\z)"™®

n (1 Ajn)"

(n—xz)n®

Notice that lim (1-A/n)" =e™:

lim In(1-X/n)" = lim nln(1l = A/n)
- lim In(1-XA/n)
n—oo 1/n

H o An?-1/(1-\/n) _
n—>co -1/n?

-
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On the other hand,

n! nn-1)...(n-xz+1) n n-1 n-xr+1
= = e e _)1asn_)oo
(n-x)n® n® n o n n
Therefore,
2z —A)\m
lim Px (ac)z—-1~1-e’)‘=6 .

Notation wise, X ~ Pr()\). R(X)=1{0,1,2,...} and Px(z) = e *\*/x!. Notice that the probabilities add up to 1:

Ze_/\—':e_AZ—':e e =1
z=0 Z z=0 L:

Mean, Variance, and MGF

The mean is given by

Remark. Of course this makes sense! On a continuum with A being the mean occurrence rate of an event,

what else do you expect E[X] to be but A itself?

The variance is given by

02 = Var[X] = B[X?] - A2 = 3 T2

Remark. A nice problem assigned in HW7 gives the identity E[X"™] = AE[(X +1)"™!] for Poisson distri-
butions. If we apply it to E[X?], we immediately have

Var[X] = AE[(X + )] - E[X]* = A(A+1) =A% = \.
Alternatively, we can again use the idea of “limit of Bernoulli/binomial distributions”:

Var[X] = 7}1_&10 Var[B(n,\/n)] = 7}1_1}1;1011 “(An)-(1=X/n) =\

The MGF is given by

px(t) = E[etx] = e’\(et -1).

Beginning of March 17, 2021
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1.4 Hypergeometric Random Variables

Let N be the size of a population, m a number of “distinguished elements”, and n the sample size. For example, let
N =100,m =50, and n = 10. Then the hypergeometric random variable X gives the probability that, among
a sample of n elements, exactly X =z elements are “distinguished” and the remaining not “distinguished”.

We write X ~ H(N, m,n) where N,m,n are the parameters.

The range of X is given by R(X) = {max(m — (N —n),0),...,min(m,n)}, but in this class we only consider the

scenario where m +n < N and so R(X) ={0,...,min(m,n)}. Typically this would simply be {0,...,n}.
It follows naturally from combinatorics that
(D))

S

Px(x) =

The mean and variance are given by

m m m\(N-n
psz[X]zn-ﬁ and(f?(:mﬁ(l—ﬁ)(]v_l).

We will show how to derive these later (once we cover indicator random variable). Now simply notice the similaries
of E[X] and Var[X] of hypergeometric random variables to binomial. The (N - n)/(N - 1) is called the small
population correction. As N — oo and n fixed, this correction — 1 and indeed this looks more like a binomial
distribution. (Note the only difference is that hypergeometric random variables are without replacements but

binomials are with replacement.)

1.5 Discrete Uniform Random Variable

This is a probability distribution with a finite number of values that are equally likely to be observed. If there are
k total values then each has a probability 1/k. In general we write X ~ unif(a,b,n) but here we first consider the
simplest case X ~ unif(0,1,n). Then R(X) = {1/n,2/n,...,(n-1)/n} (assuming n > 2). It immediately follows
that Px(x)=1/(n-1). We write X ~DU(a,b,n). (Of course, this can be easily generated to DU(a,b,n).)

Mean, Variance, and MGF

It’s intuitive that the mean is 1/2:

n-l, 1
px = E[X] = Zr:mP(w) = 2
1ol 1 nn-1) 1
:n(n—l);Z:n(n—l) 2 )
The second central moment is given by
n=1,2 4
E[X?] = ;xQP(m) = 2; ot

Therefore, the variance of X is given by

0% = Var[X] = 0% = E[X?] - B[X]?
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The MGF is given by

Beginning of March 19, 2021

n—-1 1
@X(t) _ E[etX] _ Z etm/ni
r=1 n-1
1= ti/n 1= t/nyi
_n—lizle _n—ll;(e )
1

et — 6t/n

R S A S DU S i
Tn-1et/n-1 Tn-1fetin-1

et — et/n

T (- -1y

|

More generally, we now consider X ~ DU(a,b,n). Then this is simply X =a + (b-a)U, where U ~ DU(0,1,n).

Then it follows that

(1) Range: R(X)={a+(b-a)/n,a+2(b-a)/n,...,a+ (n-1)(b-a)/n}.

(2) Mean: E[X]|=FE[a+(b-a)U]l=a+(b-a)E[U]=(a+b)/2.

(3)  Variance: Var[X] = Var[a+ (b-a)U] = (b-a)?*Var[U] = (b-a)?(n-2)/(12n).

(4)  MGF: ox(t) = ¢arp-ayu (t) = e ou[(b - a)t].

1.6 Joint Distribution of DRVs

[ Definition 1.6.1 |

Given n DRVs, define a random vector by X = [X1,..., X, ]. The joint probability mass function (jpmf)

is given by

Px (@1, smn) = P(X1 =1, Xy = 20).

Notice that we cannot observe what happens exactly to one variable while ignoring the rest; most of the times

we can only observe the events caused simultaneously by all n random variables, hence the joint pmf.

In the scope of 407, most of the times we focus on cases where n = 2 so we only have two random variables, X, Y.

[ Definition 1.6.2: Marginalization |

Assuming n = 2 as said above, the marginal distributions are given by

Px(x) = ZPx,y(x,y) and Py (y) = Zvay(x,y).

Indeed, Px(x) describes the probability of X = x and no restriction is imposed on 'Y so it can be anything.

This approach is called marginalizing out a subcollection by summing.
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Example 1.6.3. Suppose n = 4. If we wanted to find the marginal distribution of X; and X3, then we

need to marginalize Xs, X4 and sum them up:

Px, x,(w1,23) = Y. ) Px (21, %2, 23, 24).
Xo X4

Expectation. Given X = [X1,...,X,] and g:R" > R, let
Y =¢g(Xy,...,X,).
Then

E[Y]= Zn-Zg(fvl,...,xn)Py(xh...,xn).

Tn

If we let n =2, given X,Y and g:R? > R and Z = g(X,Y), we have

E[Z]=) > g9(x,y)Pxy(z,y).

Example 1.6.4. Consider Z = X +Y. Then
E[Z]=E[X+Y]= §§(x +y)Px v (z,y)
= Zx: zy:xpx,y(%y) + %: Zy:yPX,Y(%y)
= ZI:»TZU:PX,Y(CU»Z/) + Zy:yzw:PX,Y(xay)
= ;xPZ(x)+zy:sz(y)

- B[X]+ E[Y].

This can be easily generated:

Also, recall that E[cX] = cE[X]. Along with the results shown above, we see that E[:] is a linear transformation:

E[zn: CzXZ] = nl CZE[XZ]

i=1 i=

Variance. We begin by again considering Z = X + Y. Recall that Var[Z] = E[Z?] - E[Z]?. The latter is
E[Z)? = (E[X]+E[Y])? = B[X)? +2B[X|E[Y] + E[Y]*
On the other hand,

E[Z*]=E[(X +Y)?] = E[X?+2XY +Y?] = E[X?] +2E[XY] + E[Y]?
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Therefore,

0% =Var[Z] = E[X?]+2E[XY] + E[Y?] - E[X]? - 2E[X]E[Y] - E[Y]?
= (BIX?] - B[X]*) + (B[Y?] - E[Y]*) +2(B[XY] - E[X]E[Y])
=Var[X]+ Var[Y] + 2(E[XY] - E[X]E[Y]).

If E[XY] = E[X]E[Y], i.e., mean of product = product of means, then

Var[Z] = Var[X] + Var[Y].

Notice that this is not necessarily true at all!l This naturally leads to the following definitions.

1.7 Covariance & Correlation Coefficient

[ Definition 1.7.1: Covariance |

The covariance of X and Y is given by

Cov(X,Y) = E[(X - ux)(¥ - uy)]-

[ Proposition 1.7.2 |

We have the following properties of Cov(-,-).
(1) Cov(X,Y) = E[XY] - pxpy-
(2) **Cov(X,Y)=Cov(Y, X).
(3) *F*Covariance is bilinear, i.e.,
Cov(AX +Y, Z) = ACov(X, Z) + Cov(Y, Z)
and same for the other argument since covariance is commutative.
(4) **Cov(X,X) = Var(X).
(5) Var(X +Y) =Var(X) + Var(Y) + 2Cov(X,Y), as shown above.

(6) Covariance is invariant under constant addition: Cov(X +a,Y) = Cov(X,Y).

[ Definition 1.7.3: Covariance Matrix

Given X = [X7y,..., X, ], we define ¥ e R™", called the covariance matrix, by

Ei,j = COV(‘Xvi7 X])
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[ Proposition 1.7.4

Immediately following the properties of co variance, the following holds for X:
(1) ¥ =3%7 since covariance is commutative.
(2) ¥ is PSD (positive semi-definite), i.e., a’ Xa > 0.

(3)  ***Given (ai,...,a,)T =a€R", then

n
Var(z a; X;) = a’ Ya.
i=1

(This explains why ¥ is PSD.)

In particular, taking a = (1,...,1)7 gives

Var(X1 + e +Xn) = ZZEM = ZV&T(XZ) + ZZCOV(X“XJ)
i j %

i<j
The first summation is because Cov(X, X) = Var(X) and the second because ¥ is symmetric.

(4) For n =2, we have
~ % Cov(X,Y)
Cov(Y,X) 0% .

Interpretation of Covariance. Take it for granted that Cov(X,Y) >0 (resp. <0) if X and Y tend to be on the
same (resp. opposite) side(s) of their means with high probability. Why? By definition

E[(X = pux)(Y - py)],

if both terms tend to be positive or both tend to be negative then E[-] tends to be positive; vice versa.

Beginning of March 22, 2021

Proof of Cov(X,Y) = E[XY] - uxpy. Indeed,

Cov(X,Y) = E[(X - pux)(Y - py)]

[XY - uxY - py X + pxpiy]

[(XY] - px E[Y ] - py E[X]+ px py
[

[

XY ] - pxpy = py px + px fry

What if Cov(X,Y") =07 In this case we simply have

Var(X +Y) = Var(X) + Var(Y) and ox.y =\/0% +0%.

10
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[ Definition 1.7.5

We say two DRVs are independent if for any two subsets A, B c R,

P(XeAYeB)=P(XeA)P(Y € B).

Remark. We’ve already shown that if XY are independent then
Pxy(z,y) = P(X =2,Y =y) = P(X =2)P(Y =y) = Px(2)Px (y),

i.e., joint pmf = product of marginal pmf.

Theorem 1.7.6

If X,Y are independent, then F[XY]| = E[X]E[Y] = pxpuy and
(1) Cov(X,Y)=0,
(2) Var(X,Y) = Var(X) + Var(X).

More generally, if X;, X; are pairwise independent, then

Var(i X;) = iVar(Xi).

A natural question is about the converse: if E[XY] = E[X]E[Y], does it mean X,Y are independent? The answer
is no in general.

For example, consider a random variable that takes values 1,0,-1, each with a probability of 1/3. Let Y be |X]|
so Py (1) =2/3 and Py(0) = 1/3. Then XY can be 1,0,-1 for a probability of 2/9,5/9,2/9, respectively. Then
E[XY]=0and so is E[X] and thus E[X]E[Y] = 0. However,

2

vay(].,l) :P(X = 1,|X| = 1) = é and Px(l)Py(l) = 9

| Definition 1.7.7

The correlation coefficient of X, Y is given by

[ Proposition 1.7.8

Properties of correlation coefficient:
(1) If X,Y are independent then pxy =0.

(2) If p(X,Y) =0 then X,Y are uncorrelated (not necessarily independent).

11
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(3) -1<p(X,Y)<1. Brief proof: Cauchy-Schwarz!! Let « be a scalar and use the fact that
Var(X +aY) = Var(X) + o Var(Y) + 2a Cov(X,Y) > 0.
This gives a nonnegative discriminant, i.e.,
4Cov(X,Y)? >4 Var(X) Var(Y)

and so factoring and taking square roots gives the claim.

Suppose Y =aX +b. Clearly Y and X are dependent (actually, very, very dependent). Then

Cov(X,Y) = Cov(X,aX +b)
=aCov(X,X) + Cov(X,b)
=aCov(X,X) = ao%.

Therefore,

2
Cov(X,Y) __aox —gzsgn(a)

p(X,)Y) = =
ox0y oxlalox lal

This is intuitive. If X,Y are linearly related then p(X,Y) = +1. Recall that p(X,Y) e [-1,1],s0 Y =aX +b is as

correlated as they can get. Indeed, very, very positively / negatively correlated.

Beginning of March 24, 2021

Example 1.7.9. Recall: let X ~ NB(r,p) be a negative binomial r.v. Notice that the relative position of

the (n+1)* appearance does not depend on that of the n*™ appearance. Therefore
X = X1+ Xo + -+ X, where the X;’s are i.i.d.G(p).

(i.i.d. stands for independent and identically distributed). It follows that

=1 p
and
T 1=
Var(X) = Var() X;) = r( 2p).
i=1 p

Example 1.7.10. Similarly, X ~ B(n,p) can be interpreted as X = I; +---+I,, where each I; is an indicator

variable (success gives 1 and failure gives 0).

12
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1.8 Mean and Variance of Hypergeometric R.V. Revisited

Suppose X ~ H(N,m,n) where N is the total size of population, m the number of distinguished objects, and n the

sample size. We number the distinguished objects as 1,2, ..., m and define some indicator r.v. for i =1,2,...,m by

I 1 4*" distinguished object chosen;
;=
0 otherwise.

It follows that (recall that whether I,,’s are independent or not doesn’t affect what’s below)

X=Y1, — E[X] E[i[l]:iE[L]

Note that

N-1\(N\"
E[I;]=1-P(i*™™ distinguished object in sample + 0 - P(not in) = ( ) )( ) = %
n—

where the “denominator” describes the total number of options and the numerator describes the total number of

samples satisfying the requirement (i*" fixed so it’s (N - 1) choose (n - 1)). Therefore

E[X]= =n(m/N).

"MS

n _mn
N N
(Compare this with binomial’s mean of np.)
Now we compute the variance of X:
Var(X) = Var(>. 1) = 3 Var(I;) + 2 Y. Cov(1;, I;).
i=1 i=1 i<j
The variances of I;’s are easy enough to compute:

2
9 5 n n° n(N-n)
Var(I;) = E[I;] - E[I;] "N NET T NT

Now we compute the pairwise covariance (the computation of E[I;1;] is similar to that of E[I;] except now both 4
and j needs to be picked in order to let the indicator r.v. output 1):
2

Cov(l;,1;) = E[LL;] - BILIEL,] = EILL)] - 1
N-2\(N\"' n?
:(n—2)(n) N2
_ =)

N(N-1) N2’

Therefore,

Var(X) = ZVar(I +2% Cov(l;, 1)

i<j

& n(N-n) n(n-1) Ti
_Z; N2 2;[1\7(]\7—1) N2]
mn(N -n n(n-1 n?
:7(]\[2 )+m(m—1)[N(( 1)) NQ]

R G2)

Compare this with np(1 - p) times the small population correction.

13
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Remark. Alternatively, we can define indicator variables Ji,...,J, by

; 1 i*® element in sample is distinguished
=

0 otherwise.

Then if X ~ H(N,m,n) we have X =" .J;. Analogous computations of E[X] and Var[X] then follow.
i=1

[ Proposition 1.8.1 |

If X,Y are independent then, for f:R >R and g: R - R, f(X),g(X) are independent.

P(f(X) e A,g(Y) e B) = P(X ¢ [ (4),Y e g (B))
- P(X € [ (A)P(Y e g (B))
- P(f(X) € A)-P(g(Y) € B).

[ Proposition 1.8.2

If X,Y are independent then
My () = Mx (T) My (1),

i.e., the MGF of the sum is the product of the MGFs, a result directly from the property of exponentials:

MX+Y(t) _ E[@t(X+Y):| _ E[etXetY] _ E[etX]E[etY].

The last equation is guaranteed by the independence of X and Y which implies the independence of e!*
and €'Y by the proposition above.

Similarly, if X; ~ X; ii.d. fori=1,...,n, then
Mx, i, (t) = Mx ()"

For example, if X ~ G(p) (geometric) then Mx () = pe'/(1 - (1 - p)e'). Therefore the negative binomial

random variable NB(r,p) is simply the previous MGF raised to the 7" power.

1.9 Distribution of a Sum; Convolution “Sneak Peek”
Suppose we have random variables X,Y with pmf Px and Py, respectively. We now compute the pmf of X +Y:

Pxiy(2) =P(X+Y =2z)
=Y P(X=z,Y=z-z)

:ZP(Y:z—x|X:x)P(X:x).

14
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If X,Y are independent, then this simply becomes
Px.v(z ZP(X x)P(Y =z-x) = (Px * Py)(2).

This is the convolution product of Px and Py. It follows that convolution is commutative.

Example 1.9.1. Suppose X ~ B(n,p) and Y ~ B(m,p). Then it immediately becomes clear that Z := X+Y
has range R(Z) ={0,1,...,m+n}. Then,

Pz(k) = Z})PX () Py (k-j)

(?) (- p)"‘j(kn_lj) pFI(L=-p)m )
(o
et e ()()

(e OGO

Consider U ~ H(m +n,n,k). The total probability of all possible outcomes must be 1, i.e.,

o

and thus Pz (k) ~ B(m +n,p), which agrees with our intuition.

k
=2
7=0

k
=2
7=0

Beginning of March 26, 2021

15



Chapter 2

Continuous Random Variables, CRVs

2.0 Introduction (hence the numbering 2.0)

[ Definition 2.0.1 |

(Within the scope of 407:) f:R — R is said to be a probability density function (pdf) if

(1)  f(z)>20forall zeR, and

2) [:f(x)dx::Lli_{r;/_LLf(x) dz = 1.

[ Definition 2.0.2 |

Let {Q, %, P} be a probability space. X : Q - R is called a continuous random variable if there exists f
(or fx), a pdf, such that
P(X ¢ A) = fA £(z) da.
It follows that
b
Pla<X <b) = / fx(z) dz.

Remark. In the scope of 407, the < and < above can be interchanged (or even replaced by two <’s or two

b
<’s) without having any effect on the integral f fx(x) dz. Heuristically, note that
a

a+e a
P(X:a):lir%P(a—e<XSa+e):hr%[ fx(X)dx:f fx(z)dz =0,

and
P(X<a)=P{X<a}u{X=a})=P(X<a)+P(X=a)=P(X<a).

Therefore, for a continuous r.v., it makes little sense to ask P(X = a) since P(z = a) = 0. This does not
mean that X = a never happens; instead, it means that the long-term relative frequency of its occurrence is

0. It is just “wery, very rare”.

16
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[ Definition 2.0.3

The cumulative distribution function, cdf, is defined by

Fx(z) = P(X <) = f: Fx (D) di.

Remark. Since
P(X<b)=P({X<a}u{a<X<b})=P(X<a)+Pla< X D),

we have
Pla<X <b)=P(X<b)-P(X <a)=F(b)-F(a).

From the previous remark,

P(X €[a,b]) = P(X € (a,b]) = P(X € [a,b)) = P(z € (a,b)) = F(b) - F(a).

Expectation, Variance, and MGF

Expectation. For X ~ fx and g: R -» R,
Elg(X)] = [ g@)fx() do.

If we take g :=id,, we have

px = BIX]= [ afx(e) do.

Variance. Likewise,
0% = BL(X = px)?) = [ (2= px)*fx () do = Var(X).

Notice that

Var(X) = 0% = [ (o= px)*fx(@) do

= [T 2w 1) () d

- [:ngx(x) dz - 2px [:xfx(x) Az + p% [: fx(z) da
[X2]-2p% + ik
[X?] - k-

Clearly we can relate this to Var(X) = E[X?] - E[X]? for a DRV.
MGPF. The computations are all analogous to those of DRVs:

My () = E[¢X] = f: ¢ fx () dz and B[X*]= M (0).

(M)((k)(O) is called the k" central moment. The 1% central moment is the mean and the 274

Affine maps. Again, analogously we have

17
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(1) FElaX+b]=aE[X]+b = pax+p = apix +b,

(2)  Var(aX +b) = a® Var(z) (recall that variance are invariant under + constant), and

(3)  gux+b=+/Var(aX +b) =|a|ox.

Why does the MGF work?

For the first central moment (heuristically...DCT taken for granted, of course),

M&(O) = %Mx(ﬁ) att=0

:%[memfx(m)dxattzo

© 9
= [oo getxfx(x) dratt=0
:f e fx(x)dz at t=0

= f zfx(z) de = E[X].
Lemma 2.0.4
If X is a CRV with X > 0, then

E[X]:/OmP(X>:c) dx:f0m1-FX(x) dz.

Proof. Indeed, first notice that
P(X>z)=P{X<z}°)=1-P(X<z)=1-Fx(z).

Therefore,
f P(X > 2) da = f 1- Fy(z) da.
0 0

Now, taking Fubini’s theorem for granted, we have

fowP(X>x)dx:/Ow[£wa(y)dydx
=f0w/0yfx(y)dﬂcdy
- [Tixw [ dway

=fooyfx(y)dy:E[X]- -

0

Example 2.0.5. Consider

Fe(z) = c(1-2%) -1<z<1

0 otherwise.
There is a unique ¢ € R that makes fx a pdf. As long as ¢ > 0, fx is always nonengative, so it remains to
find the ¢ that satisfies the second condition, i.e., integral evaluates to 1. Hence,

€D 1
/ fX(CL‘)dx:/ C(l—x)2dx:%:1:>C:%.
—oco 1

18



YQL - MATH 407 Notes 2.0 - Introduction (hence the numbering 2.0)

Current file: 3-26.tex

To express fx in terms of indicator functions, one may use

fx(z) = 2(1 - 2?)x(-1,13() or 2(1 - 2?) 1) (2).

For another computation exercise,

0.5 0.5 3 ) 27
P(—1.5<X<O.5):f fx(x) da::f —(1-27)dz=—.
-1.5 -1 4 32
Validity check: the answer is indeed between 0 and 1. Checked.
Now we compute the cdf F}, of f,:
0 —o<x<-1
Fx(z) = [ fx(y) dy = [1 3(1-92)/ady -1<z<1
1 l<x<oo

Since fx is an even function, E[ X | has to be 0. Indeed,

13z 13z  3z3

E[X]:[:xfx(x)dx:[1 —(1—x2)dx:[ ——-—dz=0

4 1 4 4

The variance is
2 2 2 2 L 322 2 1
ox =E[X"]|-pux =E[X"] = [1 —(1-2z%)dz=-.

The MGF is disgusting so we will only provide the integral without evaluating it:

Mx(t) = E[e!X] = Z /:11 e (1 - z?) da.

Now we give a dictionary of common CRVs before moving into these topics:

Uniform: as suggested by the name.

Exponential: this is related to the Poisson distribution.
*** Normal: the most important one!

Gamma & Beta: useful in modeling populations.

x? (Chi squared): extremely important in statistics.

Cauchy & Pareto, which we’ll both cover (hopefully).
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2.1 Uniform Distribution

It is somewhat analogous to the equally likely outcome, except recall that we do not talk about P(X =a). Instead,

we say X ~ U(a,b) for a <b if the pdf satisfies

0 —co<zxr<a
1
fX(l'):ﬂX[a,b](I)= 1/(b-a) a<z<b

0 b<x<oo

Note that fx(z) 20 for all € R, and indeed

) oo b
/ fx(z)dx = o [ dz = 1 / dz =1.
—o0 b-—a J-w b-a Ja

Then,
0 —o<x<a
xT x ]_ 1 b T -a
FX(»”E):/ fX(x)dx:f T X[a,b] 4z = f dz = a<x<b
o —ob-a b-a Ja b-
1 b<x<oo.

Beginning of March 29, 2021

Mean, Variance, and MGF

Intuitively the mean should simply be (a +b)/2, and indeed

oo by > -a®> a+b
- E[X]= _ _ _
fx [X] [oo vf(x) o [a b-a de 2(b-a) 2

The variance is given by

b - a? ~ (a+b)*> a*-2ab+b> (b-a)?

ox = Var[X] = B[X*] - BIXY = g s - =) 12 12

and so ox = (b—a)/v/12. Compare these with the mean and variance of a discrete uniform random variable. Recall
that if X ~ DU(a,b,n) then

Var[X] = w — lim Var[X] = lim (b-a)*(n-2) _ (b-a)?
12n n—o00 n— 00 12n 12 .

Intuitively, P(X € (r,s)) measures the probability that a random point in (a,b) falls within (r,s), so

P(X €(r,5)) = P(r < X <s) = Fx(s) - Fx(r) = - - -—* = 2=~
b-a b-a b-a
The MGF is given by

tb _ _ta
oo b ete c c t+0

MX(t):E[etX]=f etxf(a:)dx=/ ; de =1 t(b—a)

—oo a —a

t=0.

In fact, one can check that Mx (¢) is continuous and differentiable at ¢ = 0.
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2.2 Exponential Distribution

We write X ~ Exp()) for A >0 if X is an exponential r.v. The pdf is given by

ez x320
Fx (@) = Ae X [0,00) (2) =
0 x<0.

Heuristically, think of a diminishing tail as © — oo. Clearly f is always nonnegative. We now check that the
improper integral evaluates to 1 so that it makes a pdf:

L
=1.

oo oo L
f f(z)dx = f e ™ dz = lim Ae M dgz = lim —e M .
—oo 0 x=

—o00 JO L—oo

The cdf is given by

x <0

2 0
FX(x):P({XSx})=[ f(t)dt= Ty, W
A e Mdt=1-¢ 20
-\b

= (1= €)x[0,00) (2)-
So, if 0<a<b< oo we have P(X € (a,b)) =e @ —¢

Mean, Variance, and MGF
The MGF is given by
M, (T) = E['*] = f e f(z) do = f AetTe™ dg
—o0 0

_ Afw e(t—k)x dx = Let—)\x e
0 1-A
A

z=0

= ift<Xand oo if £ 2 M.
A-t

Note that the MGF is defined only for ¢ < A.

The mean is given by

MX:E[X]:fmxf(x) dx:)\/(;ooxe’)‘x dz

= [integration by parts]

Alternatively, we can first compute the MGF and use the fact that ux = E[X] = M%(0) = 1/A. See below.

The variance is given by

0% = Var[X] = /:mzf(m) dx—%

) 1
:)\f 200 dg — —
0 xr e x )\2

1
= [integration by parts] = 5VR

Alternatively, we can again use MGF and get

1 2 1 1

TN N

Therefore the standard deviation is ox = 1/\. Relate this with the Poisson r.v.

o7 = B[X?] - E[X]* = MX(0) -
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2.3 Normal Distribution

We say X ~ N(u,0?) is a normal distribution (with mean p and variance o?;

instead) if X has pdf

some textbooks use p and o

Fx (@) = - 127T exp(_(l’—,u)z).

202

It follows that the cdf is given by

Fx(z) = exp(—(t - p)?/(20°) dt

v

This integral does not have an elementary anti-derivative, so we’ll leave it just like this.

Standard Normal

We say Z ~ N(0,1) := ¢ is the standard normal distribution if it’s the normal distribution with mean 0 and

variance 1. In 407, Z is assumed to be denoting the standard normal. It follows that its pdf is

1 2
@(m):\/ﬁe 2,

Then the cdf of the standard normal distribution is given by (written ®)

O(z) = e 12 dt.

-

Claim: ¢ defines a pdf. Clearly ¢(z) > 0, so it remains to check the integral. Let

I= foo e 24
It follows that

I2:[°oe_:”2/2 dxfooe_y2/2 dy:fcofooe_””z/Qe_yQ/2 dz dy
:[oofooe_zz/z dz eV’ /? dy:/w/we_(w2+y2)/2 dx dy

dx[Or 0Ox/00
= /f exp(-r?(cos? 0 +sin? 0)/2) ©/or dx/
R2 dylor 0Oylo

2m 2
- [ e dran - [ f 12 dr df
27
:f —e_“| a9 = f 1-04d6 = 2n.
0 u=

Therefore I? = 27 = [ =+/27 and f o(x)de=1/V2m=1.

r dé (recall Jacobian; z =rcos6,y = rsinf.)

Theorem 2.3.1: the most beautiful quote in the history of mathematics

Regarding the identity / e da = /72, Lord Kelvin once said,
A mathematician is one to whom that is as obvious as twice two makes four to you.

Quoted from Spivak, Calculus on Manifolds.

It follows that P(Z € (a,b)) = ®(b) - ®(a), and usually this is done by checking a table that has been provided.

Beginning of March 31, 2021
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Standard Normal: Mean, Variance, and MGF
Intuitively, the mean should be 0, as the pdf is symmetric along x = 0:

1 oo 1 > d
uz =E[Z] = E[m ze™™ 12 Ay = EIW P [e_IQ/Q] dz

_ % [P - %(o ~0) =0,

Since the standard normal is defined to be with variance 1, it’s no surprise that it indeed is:

Var(Z) = E[22] - 0% = E[2?] = % [: 221 dg
= [integration by parts] = 1.

The MGF is given by (surprisingly, this simplifies nicely)
Mz(t) = E[e'?] = % b et®e™ 12 dy = exp (—(z% - 2tz)/2) dz
\/ﬁf exp(—(z? - 2tz + t* = t*)/2) dz
- f exp(=(z - £)2/2) exp(t2/2) dz

3\

o)

_ f: exp(—(z - 1)?/2) do

t2/2 oo
_e / [ e—u2/2 du:etQ/Q.
21 J—oo

Notice that this gives a much nicer way to compute the variance:

N

2

Var(Z) = B[2°] = MZ(0) = [te" Pt + €] =1.

General Normal

Notice that if X ~ N(u,0?) then

X=0z+p.
Immediately we have
px =E[X]=E[cZ+p]l=p+0-0=pand ox = Var(X) = Var(cZ + uu) = 0> Var(Z) = o°.
The cdf is given by

Fx(z)=P(X<2)=PloZ+p<z)=P(Z<(z-p)fo)
_ 1 f(mfﬂ)/g e_t2/2 At
V21 J-oo

Notice that if we differentiate the cdf, we indeed recover the pdf of a general normal distribution:

23



YQL - MATH 407 Notes 2.4 - Gamma Function & Gamma Distribution

Current file: 3-31.tex

d 1 (G-l
F&(m)=£—_2ﬂ /_w et/ qt

1 d (z-p)/o
/ e’t2/2 de¢

“ rdr )
) \/12_7r -exp[-((z - p)/0)?/2]- % [m;u]
-~ 1% exp (—(362;/;)2) = fx(x).

General Normal: Mean, Variance, and MGF
The MGF of N(u,0?) is given by

Mx(t) _ E[etX] _ E[et(aZ+M)]

— et[LE[eO'tZ] — etuMz(Ut) — etueg2t2/2

o%t?
=exp|tu+ 5 )

Not surprisingly, the mean and variance are u and o2, respectively:

o2
px = E[X] = ML(0) = [(02t+u)exp (m+ 2)] -
t=0

and

2 27 2 " 2 2 2 a?t? 2 at? 2_ 2
ox =Var(X) = E[X°]-p" =My (0)—pu®=|(c"t+u)"exp tu+7 +o“exp|tuy+ — -u°=0".
t

The analogue to P(Z € (a,b)) = ®(b) - ®(a) for a standard normal distribution is

P(X & (00)) = P(Z € ((a= )] (b-w)o)) = & (L) 0 (22

2.4 Gamma Function & Gamma Distribution

The gamma function is defined by

I'(a) = f e vyt dy.
0

Note that I" is defined for all & > 0 but not « =0 (integral starts from 0 and we cannot divide by 0.)

The integrand — 0 as y — oo; even better: this integral converges for any « > 0.
Properties of the I" function.

(1) T(a+1)=al(«). Indeed,

/ e Yy*dy = —e’yya| + f eVay* tdy=0+a / e Yyt dy = ol (o),
0 y=0 0

0

where the first equality is from integration by parts: u = y*,dv = e ¥dy, du = ay® 'dy, and v=—e.

‘oo = —(-1)=1.

(2) T(1)=1. Clear enough: I'(1) = / e Vdy=-e ke
0 y=

(3) T(n+1l)=nI'(n)=---=n!T(1) =n! because I'(1) = 1. This tells us that the I" function interpolates factorials.

This gives a much more convenient way to evaluate I'(z) for non-integer z > 0: for example

I(2.7)=2.7-1.7-0.7-T(0.7).
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Gamma Distribution

We say X ~ Gamma(a, \) for a, A >0 is a if X has pdf

)\e—/\w()\x)oc—l
I'(a)

)\e—)\w()\x)a—l
I'(«)

fx(x)= “X[0,00)(T) OF fx (1) = for = > 0.

It follows that the cdf is given by

Special cases of gamma distribution:
(1) a=1,A>0: X ~Gamma(l,\) <= X ~Exp()\) (recall the exponential distribution).

(2) a=n/2,\=1/2 gives the Chi-squared distribution with n degree of freedom: X ~ Gamma(n/2,1/2) ~ x2. If
n =1, i.e., degree of freedom is 1, then X ~ Gamma(1/2,1/2) ~ x? is simply called the Chi-squared distribution
(with 1 degree of freedom). Interestingly, if X; ~ x? are independent and identically distributed (i.i.d.), then

X = iXi ”Xi-

i=1

Beginning of April 2, 2021

Sum of Normal r.v.’s
Example 2.4.1. If X ~ N(p,0?) are ii. d then the estimations of sample mean and sample variance

are given by X = — ZX and S? := —Z(X ~X)2. Then X ~ N(u,0%/n) and (n-1)S?/o? ~x2_,.
n n-

i=1

But how do we compute the mean and variance of a sum of normal r.v.? Easy:

o 12 1
BX]=E[ 3 X]= 3 E[X]=p
=1 =1
and
Var(X) = Var( ! i ! Va (zn:X) ! iVar(X) o
r = - — Var ) = — i) = —.
n i-1 2 i=1 Y n? i=1 ' n

But why is this X a normal random variable? This is the first time we actually make use of the MGF. Recall that
if Y =aX then

My (t) = E[E"] = B[¢'"*] = E[e"¥] = Mx (at),
and if X,Y are independent,

Myx,y (t) = E[e!F*)] = B[t e ] = E[e!X|E[eY ] = Mx (t) M, (t).
Also recall that if Y ~ N(y,02) then
a*t?
My (t) = exp (tu + 2) .
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Therefore,

M (t) = Blesp(iX)] = Elesp(+- 3 X,)]

B[ Texp( X)) = [ Elexp(tX,/m)]

=1
n t,LL 2t2
=]]e —t —
Bxp(n e
242 2 2
t t
—exp(tpr T8 ) = exp [ 10+ BT
2n 2

and therefore X ~ N (u,c?/n).

Back to Gamma: Mean, Variance, and MGF

The MGF of a Gamma of a Gamma r.v. is

oo etw)\e—/\w()\w)a—l

() dx

M ()= B[] = [
AO(

_ (t-N)z,a-1 d
F(a) € T X

This integral only makes sense if t — A < 0, so assume ¢ < A. Let u = (A-t)z and so du = (A —t)dz. On the other
hand, z = u/(A-t) and dz = du/(\ —t). The lower and upper limits of the integral stay the same. Then,

x(0)- a>f ()
)\ A-t)eT a)f ¢ ut du
()\ t) EEZ; ()\):t) '

The mean is just M% (0):

(07

_X.

o)
o OZt) o2,

The variance is

a 2
0% = Var(X) = B[X?] - % = M¥(0) - (X)

Example 2.4.2. Recall we previously stated that if X; ~ x? are i.i.d. then

™M=

X =Y X; ~ x2 ~ Gamma(n/2,1/2).

i=1
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To see this, we compute the MGF:

M (t) = Elexp(t 3, X))

Elexp(tX1)exp(tXs)...exp(tX,)]
E[e™]E[eX2]... E[e!*"]

My, (t)... Mx, (t) = [ Mx, (t)
=1

( 1(/12/2)t)1/ ° ( 1(/12/2 )"/ ’

which agrees with the MGF of Gamma(n/2,1/2).

jam

I
[

@

Example 2.4.3. Suppose X; ~ N(u,0)? are i.i.d. Recall that we have the sample mean X := ZX and
niz1

1 & — —
the sample variance S? := ——a YU(X; - X)2. Claim: X ~ N(u,0%/n) which we have previously shown and
n—=1;3 o

(n- 1)52 2

0_2 ~ X’nfl'

S 52
To simplify the problem a little bit, we consider S? := — Z(Xl - 1)? and we show n—2 ~x2. (Notice that
w = o

we are using the true mean y, not the estimate mean X.) Indeed,

ﬁ‘%i(&;—u)z’ Z(X “) ZZQ

-
g g7 ;3 i=1

where Z; ~ N(0,1) are i.i.d. standard normal.
Claim: Z2 ~ x2. Indeed, if we look at the cdf of Z2,

Fp(x) = P(22 <z)=P(-VT<Z< V)

[ /2 g f 12 qt.
V2 \/ 2m
On the other hand, (recall that pdf is the derivative of cdf)
fZZ(x)— FZ( )—* [ 2 at
dz /2

2 i[\fe_t 2 qt

- fdx
(U d
f Vau dx\/E
2 —x/ZL
" Ver A
o-®/2,,1/2-1
\/_
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One more computation before we draw the connection:
r(1/2) = f vyt dy = f ey dy

_, V2 °°ey
:f y\/—_d—\/_f

[u: \/—f 2 g
=§[oo e_”2/2 du = /7.

Therefore (finally!),
1 g 2 1,
Sy (x) = 2\/7_;6 s o-1/2 me a1V = fra(2).

Therefore Z? ~ x? and since each X is i.i.d.,

2.5 Beta Distribution

A useful distribution with a compact support (along with uniform distribution). We say X ~ Beta(«, ) if

Ix(x) = a_l(l—x)ﬁ_1X(0,1)(fC) for a, >0,

B(a 7,3)

where
1
B(a, B) := f N1 -2)P ! da.
0

The factor 1/B(«, 3) ensures that the integral of fx(«) is 1 so that X makes a random variable.

Beginning of April 5, 2021

Pdfs of some beta distribution from Wikipedia:

2.5

e

RRRQ g
oy,
NNPUs
T ||
uNWwWH=WL

1.5

PDF

0.5
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Claim. B(«, () =T'(a)T'(8)/T'(a + ). To see this:

I‘(ac)F(y)z/() e Myt du/(; e ¥t du

= f / e TV du do
o Jo

Now we invoke change of variables u := 2t and v := 2(1 —t) so that as u,v - oo, t > 1 and z — co. The Jacobian is

t z

=Z.

Oufdz Oufdt
1-t -z

[0z  Ov|dt

J(z,t) = detl

Then,
e = [T [ et e -0y Gl
:foofle_z(zt)x_l(z(l—t))y_lz dt dz
0 0

oo 1
[ / e v (1 - )Y dt dz
o Jo
oo 1
e 2" dy f t" (1 -ty de
0

=I(x +y)B(z,y).

Since beta distribution is on (0,1), it is often times used to model proportions, for example Bayesian estimation in

a binomial distribution (more to come in 408).

There is no closed form expression of MGF. However, it is easy to calculate moment directly:

1 1
E[X"] :[0 a” (1 -2) 1 da

B(a, B)
B o as
P+B) o T(@+8) D(n+a)(3)
_F(a)F(ﬂ)B( +o.f) T()T(B) T(n+a+h)

:F(a+ﬂ)F(n+a): [(a+B) T(n+a)

Fa)'(n+a+pB) Tn+a+pB) T(a)
(n+a-1)(a+1)(a)

(n+a+pB-1)(a+B+1)(a+pB)

In particular, the mean of Beta(«, ) is

o
= E X =
px = E[X] = — 3
and the second moment is
Da
R O G .
X7 (a+B8+1)(a+p)
Therefore, the variance of Beta(a, 8) is
(a+ 1) a? af

7= X = e D@ ) @ PP @B D@

And... a disgusting MGF:

k-1

> th a+r
Mx(t)=1 — —.
x(t) +,€Z:1/€!(E)a+,8+r)
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2.6 Pareto, Weibull, Cauchy, t, and F' Distributions

Pareto Distribution

We say X ~ Pareto(a, §) if the pdf of X is given by

B
fx(z) = %X[a,w)(m) a>0,8>0.

The mean is ux = E[X] = ﬁﬂ . for 8 >1 (and if 5 <1 there is no finite mean).

The variance is 02 P for 8> 2 (and no variance for 8 < 2 similarly)
vari soy=——"7-—— v <2si y).
- (B-18-2)

Weibull Distribution

We say X ~ Weibull(~, 8) if the pdf of X is given by
Yy 1 — i
fx(z) = Eﬂﬂ e X 0,00y (@).

Note that if v =1 this reduces to an exponential variable (with A = 1/3).

The mean is pux = E[XT(1 + 1/v)/8"; the variance is 0% = B2 [F(l +2/7) -T?3(1+ 1/7)]; and the moments are

BIX"] = 8"T(1+n/7).

Cauchy Distribution

We say X ~ Cauchy(0,0) if the pdf is given by

fX(v’U):i !

— forz e R0 R, and o > 0.
o =

This is related to the quotient of two standard normals. Mean or variance does not exist (not finite).

Student’s t Distribution

We say X ~t, if
F((v+1)/2) 1 1

T(v2) o (L+ (22) 3D

fx(z) =

zeR,veZ".

(v is the degree of freedom.) The mean is 0 for v > 1 and the variance is v/(v - 2) for v > 2. The moments is

N((n+ D/2V((v =1)/2) o
0 if n<v odd.

if n < v and even

In fact, this is related to the standard normal and y-squared distributions. If Z ~ N(0,1) and U ~ x2, then

ZINU[n ~t,.

n
In statistics, recall if X; ~ N(u,0?) are i.i.d. then we use X = — ZXi to estimate the sample mean. As a test

N2
hypothesis, suppose the true mean p = ug. We know if E[X;] = uo then

X - po
o/v/n

~Z ~N(0,1).
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(n-1)82

2 ~x2_,. Then

1 & —
Also recall that we estimate the sample variance by S? = 1 Z(XZ -X )2 and
n-—1lixa

Y‘UONY_MO:(Y_NO)/(U/\/E)_LZ 4 _ Z N
ol S/ (S[V)[(efvn)  Slo \Jin-1)S2](02[(n-1)) 2,/ (n-1)

F' Distribution
We say X ~ F), , if

I((m +n)/2) (m)mﬂ i (1 )‘“’”"”2

—F(m/Q)F(n/Q) o x for x € (0, 00).

Ix(z) =

n

If U~x2 and V ~x2 then X := (U/m)/(Vn) ~ Fn.
In statistics, this is used to test o2. Suppose we have two populations and we want to see if they have the same

variance: let
Xi~N(p,07),i=1,2,...,nand X; ~ N(p,03),i=1,2,...,ny

be i.i.d. Hypothesis: 02 = 02 = 02. Let

1 ni o 1 no o
5% = S(Xi-X)*and S5 = —— Y (X; - X)?
ni-1:3 na—1/3

Xo, /(1 —1)

th 2 2%52 SQ ~
€1n 01/0 1/ 2 X%z/(nZ_]-)

~ Flny-1),(na-1)-
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Chapter 3

More on CRVs

3.1 Distribution of a Function of a R.V.

Example 3.1.1. Let X ~ U(0,1) and suppose Y = X™. Then intuitively we have Fy (y) = P(Y < y) =
P(X <y'/™) = Fx(y'/™) = y*/™. We get the cdf of Y

0 y<0
Fy(y) =1{y"" 0<y<1

1 1<y
and differentiating the cdf w.r.t. y gives
0 y<0
1/n-1
fyw)=1Y 0<y<l
n
0 1<y.

Example 3.1.2. We now generalize the example above using inverse function (since the inverse of z" is
y™). Suppose X ~ fx (pdf). Let Y = X2, Then Fy(y) =0 for y <0 is clear. Now assume y > 0. We see
Fy(y) = P(Y <y) = P(-y < X <) = Fx (V) - Fx(=V/y)-

(The above assumed X is a CRV.) Then taking the derivative w.r.t. y gives

0

Fx (Vi) + Ix (/D)
27

—oco<y<0

Ix(y) =

y > 0.
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Theorem 3.1.3

Suppose X is a CRV with pdf X ~ fx. Let g : R » R be either strictly increasing or strictly decreasing.
Also assume g is differentiable. (We want g~! to exist.) Then if Y = g(X), the pdf of Y is

0 y # g(x) for all ©
fr(Y)= . d
Ix(g (y))‘@g (y)‘ y = g(x) for some .

where ¢! is defined to be such that g~ o g = id,.

Beginning of April 9, 2021
Proof. If g is strictly increasing or decreasing then ¢! is well-defined. Notice that if g is increasing then
Fy(y)=P(Y <y)=P(X <g7'(y)) = Fx(97 (v))-
Therefore,

fr(y) = dinz(G-%y)) - fx(g‘l(y))d%g_l(y)

d d
and d—yg_1 (y) = ‘d—yg_l(y)|. One can show analogously that when g is decreasing the original equation still

holds, and this is the case where | - | matters:
Fy(y) = P(X <y) = P(9(X)<y) = P(X 297 (y)) =1 - Fx (97" (%))

and

d

fr () = diny(w =6 W) g9 ) - fX<g*1<y>>|diyg*(y)|.

Example 3.1.4. If X ~ N(u,0?) then Y = e is said to be log normal with parameters p, 2. Notice
that Y € (0,00). For y > 0, the pdf is given by

"

fr(w) = Fx ()il = ~——exp ( oy ) ) 1

3.2 Jointly Continuous R.V.s

Recall that, when talking about discrete r.v.s, we look at cases where we had multiple discrete r.v.s associated with
the same experiment and we investigated their joint distribution. When the same idea is applied to continuous

r.v.’s, instead of a joint pmf, we now have a joint pdf.

(In fact, we can have a mizture of continuous and discrete r.v.’s!)
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[ Definition 3.2.1 |

A function f:R™ — R is said to be a joint pdf if

f(z) >0 for all z and fR’ flx)yde=1

where x := (z1,...,2,) are vectors in R".

[ Definition 3.2.2 |

We say Xi,...,X, are jointly continuous r.v.s if there exists f : R™ - R a jpdf such that, if S c R",
P(zeS) = [S (2) dz.

Notice that this is a generalization of the single variable version: P(X € A) = fA f(x) dx.

In 407 we will be most concerned with the case n = 2. The definition then says fxy : R? - R is a jpdf if

P (@) >0 forall (e,y) e B2 and [~ [ " foy(ay) dedy =1,

and X,Y are jointly continuous if for S c R?,

P((X,Y)eS) = ffs Fxy (z,y) dz dy.

[ Definition 3.2.3

It follows naturally that we are able to define the joint cdf

T ry
Fxy(@y)=P(X <aY <p)= [ [7 fey(@9) didg.

Remark. Similar to the single-variable case, we may recover the joint pdf by differentiating the joint cdf:

” O rerr i 4) di dj
fX,Y(fvy)—m X,Y(xay)— 910y [oo [me,Y(xvy) T ay.

2 2

—— and
0x0y a Oyox

are the same.

In 407 we assume that the differential operator is insensitive to order, i.e.,

Marginalization

Recall that we can “fix” all but one variables and marginalize the remaining one. Here we apply the same idea.

[ Definition 3.2.4 |

For the case of two variables, the X-marginal, Y-marginal distributions are given by

fx(z) = /_: fxy(z,y) dy and fy(y) = [: Ixy(z,y) dz.
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This easily generalizes to the case of n variables: to marginalize {Xg,,..., Xg, } c{Xy,..., X, },
kal""’ka (mk17 e 7:Ek,‘m) = \[Rn—m ka17...,ka (:I:k,‘l P zkm) dm]l Tt dmjm—n °
[
Ji#{k1,e s km}

Imagine if we are trying to find P([X,Y] € [a,b] x [¢,d]). By inclusion-exclusion

[a,b] x [¢,d] = ((=00,b] = (=00, a]) x (([~o0,d] — (—o0,])
= (=00,b] x (—00,d] = (—00,b] x (—00,c] — (=00, a] x (—00,d] + (=00, a] x (—o0,c].

Thus

P((X,Y) € [a,b] X [C,d]) = F’)(?y(b7 d) —vay(a,d) - F)Qy(b,c) +FX7y(a, C).

An illustration from lecture where the box denotes [a,b] x [¢, d]:

]

Expectation

Suppose g: R" - R and X3,...,X,, are jointly continuous with jpdf f, then if Y = g(X3,...,X,,) (a scalar random

variable) we have

E[Y]-= [Rn g(x) f(x) dz where x € R™.

Intuitively this is just the generalization of E[X] = f xf(z) dz in the single variable case where g(x) = x.

Example 3.2.5. Suppose we have two r.v’s, g(z,y) = z+y and Z = X +Y. For simplicity we let f := fx y.

Same thing in the future unless otherwise specified. Then (assuming we can interchange order of integration
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in 407)

Blz]= [: [: g(z,y) f(z,y) dz dy
) [: [:($+y)f(x,y) dz dy

:[:[:xf(x’y)dmdw[:[:yf(x,y)dxdy
:[:[:xf(x’y)dydef[:[:yf(x,y)dxdy

:[:x[:f(x,y)dydx+[:y[:f(x,y)dmdy

= [ Caix@ des+ [ yfy(y) dy = BIX]+ BY],

In general, F is a linear operator, i.e.,
i=1 i=1

But what about variance of sum of jointly continuous r.v.’s? Once again this is analogous to the discrete case.

Covariance, Correlation, € Independence

| Definition 3.2.6 |

The covariance of two jointly continuous r.v’s X and Y is given by

Cov(X,Y) = E[(X - pux)(Y — uy)]
- /ﬂ;z(z - px)(y = py) f(z,y) dz dy.

Just like how in the discrete case Cov(X,Y) = E[XY] - uxuy we also have it here:

Cov(X,Y) = [ wyf(a.y) dody—puxpy.

[ Definition 3.2.7

The correlation coefficient of X,Y (again, this should look very familiar!) is given by

Once again, Cauchy-Schwarz inequality tells us p(X,Y) € [-1,1], and if |p(X,Y )| =1 then Y = aX + b (so they are

linearly related and thus very, very dependent).

[ Proposition 3.2.8

Covariance is bilinear and commutative, and Cov(X, X) = Var(X).

Also, as in the discrete case, given X1, ..., X, jointly continuous, we can define the covariance matrix
pIN Ei,j = COV(Xi,Xj)
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and it enjoys all the properties that a discrete r.v. covariance matrix has (symmetric and PSD). In particular, the

covariance of a linear combination of X;’s is (just like before)
n
Var(} a;X;) =a’ a
i=1
and thus

Var(Xy+--+Xp) = Y, 8= Var(X;) +2 ) Cov(X;, X;).
ij=1 i=1 i<y

This naturally leads to the hypothesis that if X,Y are independent then Var(X +Y) = Var(X) + Var(Y) —
Cov(X,Y) =0. Indeed, this is true:

[ Definition 3.2.9

Jointly continuous r.v’s X,Y are said to be independent if

P(XeAyeB)=P(XecA)P(Y € B).

If so, we immediately see E[XY] = E[X]E[Y] and thus Cov(X,Y) = E[XY] - E[X]E[Y] = 0. Also recall that
E[XY]=E[X]E[Y] is a sufficient but not necessary condition for the independence of X and Y.

Beginning of April 12, 2021

Why X,V independent =— E[XY] = puxuy and Cov(X,Y) =07
Proof. On one hand
P(XeAYeB)= /;1 foy(m,y) dz dy

and on the other hand
P(X e A)P(Y eB) = [ fx(@)da [ fy(y)dy.
If X and Y are independent then these two are the same, so (assuming Fubini...)
P(XcAY eB)-P(Xe P eB)= [ fxy(@y)dedy- [ fx@)de [ fv(y)dy
- [ Erey ey [ fx@)fv(y) de dy
- [ Fxr @) = Ix @)y (y) da dy =0,

Note that A and B can be chosen arbitrarily, and the above can hold for all A, B only if fx v (x,y) - fx(z) fy (y)

is uniformly 0.

Then,
E[XY]= ./R? zyfxy(z,y) de dy
= fRz zy fx (x) fy (y) dz dy
- [ atx@yde [ yfr(y) dy = EIX]ELY)
and so Cov(X,Y) = E[XY] - E[X]E[Y]=0. O
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Remark. In fact, one can also show the other direction (again, exchanging the integrals, etc.) and obtain

the following:
X,Y independent <= fx vy (z,y) = fx(z)fy(y) for all z,y.

Alternate proof showing X,Y independent = fx y(z,y) = fx(x)fyv (y).

Now we present a slick way to show what has been shown above: if X,Y are independent, then
Fxy(z,y)=P(X <z,Y <y) = P(X <2)P(Y <y) = Fx(2)Fy (y).

Then

0? 0?

fxy(2,y) = Fxy(z,y) = 920y [Fx (2)Fy (y)]

dzdy Oy
g[— (Fx( x)Fy(y))] i [FX(w) FY(y)]
[

Fx(x)fy (V)] = fx(z) fy (y)- O

[ Corollary 3.2.10

Suppose X,Y are jointly continuous. They are independent if and only if

Ifxy(z,y)=g(x)h(y)

for some functions g, h and all (z,y) € R?, i.e., if and only if fx y(x,y) can be factored into the product of

a function only of x and another one purely of y.

Example 3.2.11. We now present a counterexample to the above corollary: if fx y(z,y) = g(x)h(y) does
not hold for all (z,y) € R? then X,Y may fail to be independent. Consider (for some ¢ € R which we'll

determine later)

0 O<y<e<l
fX,Y (.’E, y) =
cxy otherwise.

Notice that 0 < z <y < 1 describes the triangle bounded by (0,0),(1,0), and (1,1). Clearly fx y is always

nonnegative; to make it a joint pdf, we want the double integral to be 1:

1:/ / Ixy(z,y) dmdy:/ / cry dy dz
o Jo
f f ydydx—cf r-2?/2dx

cxt
8

= c=8.
x=0

Now we find the X-marginal: clearly fx(z) =0 for z ¢ (0,1). For x € (0,1) we have

fx(x)= fo 8xy dy = 42° — fx(x) = 4:103)([0,1].
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Likewise for the Y-marginal: it vanishes everywhere but on [0, 1]:

1
fr(Y) = f 8oy dz = 4y(1 - y*)X[0.1)-

It turns out
fx(@)fy (y) # fxv(2,9).

Recall we’ve shown in the previous proof that if X, Y are independent then fx v (z,y) = fx () fy(y). Taking
the contrapositive here tells us that X and Y are not independent in this example. The problem? Domain!
Alternatively, one can compute the means and variance and show that the covariance is monzero, but that

takes a ridiculous amount of computation so...

Beginning of April 14, 2021

3.3 Conditional Distributions

Recall that given a probability space {2, 3, P} and two events A, B with P(B) > 0, we can define a new probability
measure P(A | B) conditioned on B by

P(AB)

P(B)

P(A[B) =

Note that {2,X, Pg} is also a probability space (where Pg(A) := P(A| B)).

It follows that we can define a probability distributions for r.v.s conditioned on what another r.v. does.

Discrete Case

Given {Q,%, P}, X : Q = R, px the corresponding pmf, Y : Q - R, and py the corresponding pmf, define

P(X=2,Y=y) _Pxy(z,y)
P(Y =y) Py (y)

pX|Y($|y):P(X:$|Y:y):
for z € R and y such that P(Y =y) > 0. If we keep y fixed then we get a pmf of x (conditioned on Y =y). We can
define a cdf by
Fxy(z|y)=P(X <2 |Y <y) =Y pxy(2]y).
z<T
Notice that, if X,Y are independent, then P(X =2,Y =y) = P(X =2)P(Y =y) and so

P(X=zY=y) PX=2)P(Y=y)
P(Y =y) P(Y =y)

pxiy(z]y) = =P(X =)

Example 3.3.1. Let X ~Pr(A;) (Poisson) and Y ~ Pr(\z) are independent. What is px|xy (k| n)? (Of
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course we won’t be focusing on X conditioned on Y because independence makes this boring.)

pxix+y(k|n)=P(X=k|X+Y =n)
_P(X=k,X+Y=n) P(X=kY=n-k)

P(X+Y=n) —  P(X+Y=n)
[independence] = P(X;(?fg::n@ -

« (e MAF/RN (€2 A8 /(n~ k)!)
e~A~A2 ()\1 + Ag)”/n'

ol Ak
Tk (n-k)! (AL + )

Gl
IAVIAVYEDYY A PYEPY
where the denominator after the = can be computed using the MGF of Poisson distributions. (If X and Y’

are independent then px.y(t) = px(t)py(t), i.e., MGF of sum is product of MGF. One can use this to
verify that X +Y in this example is indeed Pr(A; + A2).) But then the final result rings a bell, does it not?

X | (X +Y =n) ~B(m, /(M + X))

Continuous Case

[ Definition 3.3.2 |

Given a joint pdf fx y, we define the conditional pdf by
fX,Y(xa y)
fxy(@ly) = ————

fy(v)
for z € R and y with fy (y) > 0.

Where does this definition come from? Heuristically, for very small (but positive) Az, Ay < 1 we have

ny(l' | y)AI’ _ fX,Y(Iay)Ax% _ fX,Y(fC,y)Asz
| M) Ay (A
Plr<X<z+Az,y<Y <y+Ay)
b Ply<Y <y+Ay)

=Pz<X<z+Az|y<Y <y+Ay)

which roughly describes the probability that X is between x and x + Az given Y is between y and y + Ay.

Like the discrete case, fxy (- | ¥) is a pdf where the variable is  conditioned on Y =y. Indeed this is always
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nonnegative, and, given some y,

e fX,Y(xay)

/:m Ixyy(z]y)de= . T(y)df
1 * o) de = 1Y W) _
S Fo) S Py @ = g

——>0 =D 0<

Having defined the conditional pdf (the density function), we can now calculate the probability of X being in some

AcRgiven Y =y:

P(X€A|Y:y):/AfX‘y(ﬂy)dx:f%(y)/Afx,y(x,y)dx.

.. and, not surprisingly, we can also compute the conditional cdf:

Fay (@9 =P <o Y =9)= [ fay(tln)at= s [ fevtaar

Remark. Note that even though P(Y =y) =0, the definitions above are well-defined because the density

fy (y) is nonzero and we are conditioning on this.

Example 3.3.3. Consider X,Y jointly continuous with joint pdf
e Yy

fX,Y(‘ray) = Yy
0 otherwise.

O<z,y<oo

We claim that fx y is a joint pdf (and will not verify it). Now we compute fx|y(z |y) and P(X >1|Y =y).
By definition,

fX,Y(xvy)
Iy (y)

0 otherwise.

0O<z,y<oo
Ixiy =

We first need to find the Y-marginal fy (y) for y > 0:

00 o~ T/Yp~Y -y oo
fr(y) = f £ dp=" eV dg
0 y y Jo

e Y oo

= 7 [_ye—x/y]z_o

=e Y.

Therefore the conditional pdf actually becomes simpler:

e Y]y 0<zy<oo
fX\Y(x ly) =
0 otherwise.

For P(X >1|Y =y), we simply need to plug in the definition:

P(X>1|Y:y):-/1 Ixy (x[y) dac:/1 ey da = e MY,
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Example 3.3.4. In this example we look at the density of a t-distribution with n degrees of freedom.
Recall that if X; ~ N(p,0?) iid. fori=1,2,...,n then
(n-1)5?

2

1 n _ o 1 n
= ~tp_1 where S? := ﬁ;(& -X)?and X := ﬁ;XZ

Also recall that t,,-1 ~ Z/\/x%_,/(n—1) (where Z is the standard normal N(0,1)).
Now we define t,, ~ Z/\/Y [n = /nZ//Y. What is f,_(t)?

Since Z,Y are independent,

Fry(tly) =Pl <t|Y =y)
= P(VnZ|NY <t|Y =y)
[independence] = P(\/nZ/\/y <t) = P(Z < t/y/n).

Therefore,

y/n

fey (1Y) FZ(t\/ n) = &f 72 dy

t2
[Leibniz] — Ee—ﬂy/@n)‘ /y/n — /% exp (_23) )

Recall that Y ~ x2 identifies with Gamma(n/2,1/2) and

e—y/2yn/2—1 ;
B - 0.
Then,
(n-1)/2 2
_ _ Y (T +n)y ~
Jrasr ) = ey (10 () = sz s (=) for e (om0 0.
t2
Finally, to find f;, (t), we need to find the ¢,-marginal of the above (by integrating!). Let C := "™ Then
n
fo® = [ fuv(ty) dy
1 oo
- —cy, (n-1)/2 d
2+1)/27 (n[2)\/Tn [ <Y Y
(n+1)/2 (n-1)/2
[x:=cy dz=cdy]= 2("+1)/2F(n/2 Jan o x dz
(n+1)/2
n F((?’L+1)/2) F((n+1)/2)(1+t2/n)—(n+1)/2 00 <t< 00,

T (2 +n)DRL(n)2)/an  Janl(n/2)

—t2/2

1
In fact, as n - oo, the mess above converges to ——e the standard normal.

21
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| Definition 3.3.5

We say X,Y have Bivariate Normal Distribution if, given px,uy,ox,0y (both standard deviations

>0), -1 < p:=px,y <1 and if their joint pdf is

) 1 1 e-px\? (y-mv ), (@ px)(y - py)
fX’Y(x’y)_QFUxUY\/l—erxp( 2(1-p)? [( ox )+( oy ) % oxX0y ])

Beginning of April 16, 2021

If X,Y are uncorrelated then the last term containing 2p vanishes and /1 — p? becomes just 1. Then fx y (x,y) =
fx(z)fy(y) and hence X,Y are independent. (This is a property unique to normals.)

We can actually find the conditional distributions of a bivariate normal distribution using

fX,Y(x,y)

fxy(zly) = TG

Given Y =y, we have
X NG+ p (o= ). 0% (1= %)
and likewise if we are given X = x.
If X,Y are correlated then X conditioned on Y is exactly X and vice versa, so indeed this is another way to see

that X,Y are independent in this case. This result generalizes to multi-variate normals (not just bivariate normal).

Continuous r.v. Conditioned on DRV

Suppose X is a CRV with pdf X ~ fx. Let N be a DRV with N ~ Py its pmf. Heuristically, for Az « 1,

fX|N(x|n)zP($<X<$Zj(x)|N:n)

_ Px<X<z+Ax,N=n)
- P(N =n)Az

_P(N=n|z<X<z+Az)P(x<X <x+06X)
- P(N =n)

Ix ().

P(N=n|X=2x)
P(N =n)

[Az - 0] >
(This is a pdf, not pmf, since f is a CRV.)
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Example 3.3.6. Suppose N ~ B(n +m,P) where P ~ U(0,1). Now we compute the distribution of P

given N =n:

P(N=n|P=p)
P(N =n)

fr(p)

fP|N(p|”) =

B (n+m)pn(1_p)m B C'p”(l—p)m Oépé 1

n

= P(N -n) X[o,l](p) = 0

otherwise.

Here C is just the constant determined by (":Lm)/P(N =n). Since fp|y is a conditional pdf, the term
p"(1-p)™ cries out for a Beta distribution! Thus P | N =n ~ Beta(n+1,m+1). The integral must evaluate

to 1, so we must have
1 F(n+m+2)

"B(n+l,m+1) D(n+ )D(m+1)

(Recall this from section 2.5 where we discussed the characterization of the normalizing function B(,-) for

Beta distribution.) Therefore,

fratrim - F(E(f;);;i) 57" (=2 x0(P)
(and also)
Py oy () Tl DR ()

C P(n+m+2)

3.4 Conditional Expectation & Variance

Conditional Expectation

Let X,Y be random variables. We now compute the expectation of X given Y =y. Intuitively, this is given by

Y aPxy (z|y) (X discrete)
BX|Y =y]-{%

f zfxyy(z|y)de (X continuous).

(Of course, since the conditional pmf/pdf involves division by Py (y) and fy(y), we have to assume in the first

place that these are positive.)

Example 3.4.1. Suppose X,Y ~ B(n,p) independent. We compute E[X | X +Y = M]. To do so, we need

Px|x+y. For k < min(n,m) (why so? X cannot be bigger than m if X +Y = m, and X cannot be bigger
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than n because that’s the total number of trials conducted)

P(X=hX+Y=m) P(X=kY=m-k)

P(X|X+Y)(k|m)=

P(X+Y)=M P(X+Y=m)
_P(X=k)P(Y =m-k)
- P(X+Y =m)

_ P a-p) (e )
(i:b)pm(]_ _p)2n—m

()

Notice that k + (m - k) =m and n +n = 2n, so this corresponds to a hypergeometric r.v.! More formally,

X|X+Y=m~H(2n,n,m),

i.e., a total of 2n elements in which n are distinguished and we are asked to create a sample of size m. (Note

that this is a DRV.) Now,
E[X|X+Y=m]=220_1
2n 2

Remark. We can think of E[X | Y] as a function of Y, ar.v. See the remark below for a direct application.

[ Proposition 3.4.2 |

E[E[X |Y]] = E[X]. This provides an alternate way to compute E[X].

Proof. We will prove the continuous case; the discrete case is similar:

BIBX V)] = [ Ar@)BIX|Y = y)dy
= [:[[:xfxw(fly) dw] fy(y) dy
- 2 D et e inn ) aray

=[ [ rfxy(z,y) de dy

) [:x[: fxy(z,y) dy dz
= f:xfx(x) dz = E[X].

Example 3.4.3. Consider the expectation of a sum of a random number (V) of random, i.i.d. variables

X,;’s with means p. Conditioning the sum on the number N, we have

N N
E[;Xi] = E[E[;Xi | N1
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If we further assume that X;’s and N are independent, then

N n n
E[;Xi | N =n]= E[;Xi] = ;E[Xi] = np.
Then,
N
E[ZXl | N]= NE[X]
and
N N
E[;Xi] - E[E[Z;XZ | N]] = E[NE[X]] = E[X]E[N]. (by independence)

Conditional Variance
Having discussed conditional mean, we now consider conditional variance:
Var(X |Y) = E[(X - E[X |Y])?|Y].

In fact,

Var(X |Y) = E[X?|Y]-E[X |Y]?
highly analogous to Var(X) = E[X?] - E[X]?. This tells us that Var[X | Y] itself is a r.v.
The mean of Var(X |Y) is given by

E[Var(X |Y)] = E[E[X*| Y] - E[X | Y]’]

E[B[X?|Y]] - E[E[X | Y]]
E[X*]-E[E[X|Y]?*].

On the other hand, by definition of variance (treating E[X |Y] as a r.v.)

Var(E[X |Y]) = E[E[X | Y]*] - E[E[X | Y]]* = B[E[X | Y]] - E[X]*.

Therefore,
E[E[X|Y]*]=Var(E[X|Y]) + E[X]*

Combining (1) and (2) gives
E[Var(X |Y)] = E[X?] - Var(E[X | Y]) - E[X]?

SO
Var(X) = E[X?] - E[X]? = E[Var(X

Y)] + Var(E[X | Y]).

[ Proposition 3.4.4 |

(Recall from before) E[X] = E[E[X | Y]] and Var(X) = E[Var(X | Y]) + Var(E[X | Y]).
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N
Example 3.4.5. What is Var() X;)? (Same assumptions from the previous example.)
i=1
N
Fist, from the previous example E[)  X; | N =n] = NE[X], so
i=1

N
Var(E[Z; X, | N]) = Var(NE[X]) = E[X]? Var(N).

With the assumption that X;’s are i.i.d. with Var(X;) = Var(X) (treated as constant),
N
E[Var(}  X; | N)] = E[N Var(X)] = Var(X)E[N].
i=1
Therefore (finally!),

N N N
Var(Z X;) = E[Var(z X; | N)] +Var(E[Z X;|N))

=1 =1 i=1

=Var(X)E[N]+ E[X]?Var(N).

Beginning of April 19, 2021

3.5 Convolution: Distribution of Sum of CRVs
suppose X,Y ~ f(z,y) their joint pdf. Let Z = X +Y. What is fz(2)? Intuitively,

Fy(2)=P(Z<2)=P(X+Y <Z) = / F(a,y) dy da.
X+Y<Z

Writing this as a double integral,

Fz(2) =[: [: f(z,y) dy dz.

To get the pdf, (taking interchange of limit and integral for granted again)
d d oo z—x
2= =Fe@) =+ [ [ fay) dyde
dz dz J-00 J-

:[:%[jf(x,y) dy dz
:foof(x’z‘x)c%(z—w) dz

:[:f(x,z—x) dz.

If X,Y are independent, i.e., f(x,y) = fx(x)fy(y) we can say a little more:

@) = fx @y @) = [ @)= o) do = (fx o« f)(2),

the convolution product of fx and fy. Convolution has a lot of nice algebraic properties: commutativity,
distributivity, and associativity, for example.

Heuristically, for commutativity, since X +Y and Y + X define the same random variable, we must have
Ixvv (2) = frax(z) = (fx * fy)(2) = (fy * fx)(2).
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Alternatively, one can use u-substitution u:= z — x in f fx (@) fy(z-2) dz and obtain

(fX*fY)(Z):/::fX(x)fy(z_m) dx:_/;ome(Z—U)fy(u)du
= /:: fx(z=u)fy(u) du=(fy * fx)(2).

—_—>0C— D 0<

But what about more random variables? In particular, what would happen if we add n i.i.d. X;’s up? It turns
k
out we can convolve recursively with the common pdf: let fi be the density of S := Z X;. Obviously S; = X; and

i=1
fi1(s) = f(s). Since Sy = X5 + 5 (and they are independent)

fa(s) = (f * f1)(s)

and inductively (we have to traverse through the list one by one...)

Sn:Xn+Sn—1 :fn(s) =(f*fn—1)(8) =[:f(x)fn_1(s—x) dz.

Example 3.5.1. Consider X ~U(0,1) and so fx = x[o,1](x). We initialize f; = f. Then

)= [ h@fs-2)do

= [oo X[0,11(%)Xx[0,11(s — ) dz 0 s<0

1 1
= [ xpar(s-2) o= [ Xara(e) da

0 5> 2.
It follows that fo has a “triangle density”. But what about 37
0 5<0
s2/2 0<s<1
515 = [~ xpom(@)als-e) do == {12220 18 g
1-(3-52)/2 2<5<3
0 s> 3.

This becomes a piecewise quadratic function. See the plots below. Note that the first one (triangle) is

nonzero on [0, 2] and the one on the right has [0, 3].
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Plots from lecture on 4/19

One can tell that this starts to look Gaussian — and indeed it does! This leads to the limit theorems, the
climax of 407.

3.6 The Limit Theorems :o

[ Proposition 3.6.1: Markov’s inequality |

Let {£2,3, P} be a probability space and X : 2 > R a random variable with X > 0. Then for any a > 0,

E[X
P(X>a)< L
a
Proof. For a >0, we define an indicator variable
1 X2a

0 otherwise.

Since X 20, I < X/a (clear when I =0 and if I =1 then X > a — still holds). Thus,

1 ElX
E[Il<E[X/a]=—-E[X]= L
a a
It remains to notice that E[I]=1-P(X >a) +0-P(X <a) = P(X > a). This proves the claim. O

[ Proposition 3.6.2: Chebyshev’s Inequality

If X isar.v. with 4= E[X] < 00 and 02 = Var(X) < oo then, for any k > 0,

2

g
P(X -pl>k) < -5

or, equivalently,
2
ag
P(|X—y|<k)=1—P(|X—u|2k)>1—ﬁ.

49



YQL - MATH 407 Notes 3.6 - The Limit Theorems :0 Current file: 4-21.tex

In particular, if k = jo for j € N then

2

P(IX -l > jo) <

o 1 . 1
257 :j—QandP(|X—,u|<jJ)>1—j—2.

J
Thus, for any r.v., X being within 2 standard deviations of p is > 3/4 and X being within 307s is > 8/9.

Proof. Notice that (X — u)? >0, so we can apply Markov’s inequality with a = k?:

E[(X -p)? o?
—H—Elﬂjrc:<P¢X—M>k)<E5 O

P((X - p)? > k?) < p

Beginning of April 21, 2021

[ Proposition 3.6.3 |

If Var(X) =0 then P(X = E[X]) = 1. This follows directly from definition (or from Chebyshev).

—>0 (=D 0<

Weak Law of Large Numbers (Weak LLN)
Theorem 3.6.4: Weak LLN
Let {X;}53, be iid. with E[X;] = and Var(X;) = 0? < oo for all 4. Then for any € >0,

P(|Tll§;Xi—u‘>e)—>O.

Proof. Define X,, := Z X;/n. Note that this is indeed a random variable — randomness happens. We know
i=1

B[X.)= B[~ Y X] =~ Y B[X.]=p

n 12
=1

S~

(3

3
5
kR

Also by independence
2

_ 12
Var(X,) = Var(= ) X;) = 7.
n = n

By Chebyshev,

2 2

P(| X, -p|>€) < 7 gn :U—Q—>O

€ ne

as n — oo. O

Remark. Convergence in probability? What it really means is the uniform convergence in distribution.
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| Definition 3.6.5 |

For a sequence of functions {f,} and f on [0,1], we define the following types of convergence:

(1)  fn = f uniformly if, for all € > 0, there exists N € N such that sup |fn(x) - f(z)|<eforalln> N.

z€[0,1]

(2) fn — f pointwise if for all € > 0 and x € [0,1], there exists N € N such that |f,(x) - f(z)| < € for
all n > N. In other words, € in uniform convergence doesn’t care about choice of x but its pointwise

counterpart does.

(3)  fn — f almost surely (a.s.) if, for all € > 0, there exists N € N such that, if n > N, then f, - f
pointwise (see below) for all z € S c [0,1] where P([0,1] ~S) = 0. (Analogous to almost everywhere

convergence.)

(4) (Weak LLN) f,, — f in probability if, given € > 0, the probability that x (any x) is in a set | f,,(z)-f(x)| >

€ tends to 0 as n — oo.

Example 3.6.6. A non-example of functions that converges in probability but nowhere pointwise: consider

the following sequence:

J1=X[0,1]
J2 = X[0,1/21 f3 = X[1/2,1]
fa= X[0,1/4]> f5= X[1/4,1/2]> fo = X[1/2,3/4] fr= X[3/4,1]

It follow immediately that any, for any x € [0,1], for any line as formatted above, (at least) one f, in that
line is 1 at . Therefore {f,,} converges pointwise as nowhere! However, they indeed converge in probability:
the “size of the set” decreases by a factor of 1/2 every time we move down a line.

Convergence hierarchy:

unif. conv. == pointwise conv. =—> a.s. conv. = conv. in probability

Recall that an estimator Y,, (that acts on samples of size n) for a population parameter « is called unbiased if

E[Y,] = a. Besides that, an estimator is called consistent if Y,, > « as n - oo.

Example 3.6.7. X, = Z X;/n is unbiased as F[X, ] = p. It is also consistent because of weak LLN.
i=1
On the other hand, recall that the sample variance

A 12 — A -1
S§% == (X - X)? is biased as E[S?] = BT 52 402
n= n

Nevertheless, the weak LLN says it is consistent since as n — oo, E[5?] = 02,

Beginning of April 23, 2021
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Central Limit Theorem

Theorem 3.6.8: Central Limit Theorem, CLT

Suppose {X;}%, are i.i.d. with E[X;] = and Var(X;) = 0. Then

Xi+..+ X, —np
ov/n

(where the convergence refers to convergence in distribution) if and only if

—Z asn— oo

X, - p 1 o o
P~ <a)» —= =2 4.
(U/\/ﬁ a) \/% —ooe ’

Lemma 3.6.9

If {X;} is a sequence of r.v.s with CDFs Fy, Fs, ... and MGFs My, My, .... Let Y be a r.v. with CDF F and
MGF M. If M; - M with each ¢ (pointwise), then F;(z) — F(x) at all  when F is continuous (of course).
Therefore, to prove CLT, it suffices to prove that the MGFs of (¥ X; — nu)/(o+/n) converges to that of Z,

e’/2 (recall this?).

Proof of CLT. For simplicity, assume z =0 and 02 = 1 (for now). Since X;’s are i.i.d., all of them have the same
MGF; call it M(t). For this special case, we want to show that the MGF of ¥ X;/\/n converges to 2,
First note that

M, (1) = B[] = B[V ] = M(t/v/n).
Therefore, since the X;’s are independent,
My x.m(t) = M(t/\/n)".
Now we define L(t) :=log(M(t)) [note that M (¢) is positive and this is well-defined]. Then

L(0) =log(M(0)) = log E[e°] = 0.

Also,
L'(0) = %log(M (1) = ﬁM ‘o),
and
1) - 2O My 3
) M“(O)ﬂﬁ?g); MO _ y(0) = BIX2) - BIXP = o = 1.

Recall that we want to show
(M(t//n))" - e’12 asn - oo,
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or, equivalently, taking log on both sides,
nlog(M(t/\/n)) = nL(t/\/n) - t*/2.

Indeed,

tim ni(efy) = i 20
1 n n—3/2 I
(ttop] = fim SN i (;/f)t

N n- /242
[L'Hop] = lim Lt /n)n im L"(t//n )*

n—>00 —9n-3/2

= L"(0)t*/2 = t?/2,

and we are done! (Notice that L’Hop is done differentiating both sides by n, not ¢.)

For the more general case, we will apply the special case (u=0,0% = 1) to Y; := (X; — u)/o. Then E[Y;] =0 and
Var(Y;) = 1. Then,

YiaXi-np YL (Xi-p)fo & N
o\/n - Vn _ZXz/\/H g

as claimed. Now we are actually done! This marks the end of the climax of 407. O

—_—>0 (=D 0<

3.7 Applications of the CLT

Binomial vs. Bernoulli vs. Normal
Let X; ~ B(1,p) be i.i.d. with ¢ =1,2,...,n. Recall that
E[X;]=p  Var(£;)=p(1-p).

Now we define X := Y »; X;. It follows that

P(X <z)=P( zn:Xl <) = (Zle—np T —np )
i=1

Vp(l-p)vn /p(1-p)/n
) ponp ) _ oy,
[CLT] P(Z m\/_) m[w dt

(See figure from lecture below.) The larger the n, the better this approximation for obvious reasons. After all, L in

CLT stands for large!

Oyt ’Pg‘ (1\
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Here we are approximating a discrete random variable that only gives integer values. To balance the errors it is

better to set the integer values as the center of each box and let the endpoints be .5’s. Approximating a discrete

distribution gives rise to continuity correction. For example,

3.5 - 2.5-
P(X<3)wP(3an),P(X<3)mP(Z<Onp)7

Vnp(l-p) Vnp(l-p)

and X =3 corresponds to the entire rectangle of length 1, so

2.5-np 3.5-np
P(X=3)NP(<Z<).
np(1-p) Vnp(1-p)

Election Polling

These materials are originally prepared for fall 2020’s class so... not that interesting now (spring 2021).
Suppose we have a poll that says the following:

Biden  p MARGIN OF ERROR =+ 3%(+0.03)
SURVEY OF 1200 LIKELY VOTERS

Trump 1-p
(Of course this is idealized as they are not the only candidates.) Let the true proportion that supports Biden be p.

Ideally, we want p = p (or close enough). Now define
1 if the i** voter supports Biden
0 if the #*" voter supports Trump.

We can think of X; as B(1,p). Based on what we know (of p), we can define
Lio Xi

n

n

3 X,

1
niz1

DPn =

Here’s where the famous 95% confidence interval for p comes into play. In a standard normal,
P(-1.96< Z<1.96) = Z,
so by CLT we have

Z?:l Xi—-np )
095~ P -1.96< =—/——— <1.96
( ) Vvnp(l-p) )
[Yic Xi—p]/n
=P -196 < ——FF—w—F—
( Vp(1-p)/n
=P(-1.06 < (p-p)/\V/p(1-p)/n<1.96)

=P(p-1.96\/p(1 -p)/n<p<p+1.96y/p(1-p)/n).

Therefore, there is a 95% chance that the true ratio p lies within this interval, i.e., 95% probability that

1-
p—pl < 1.96y/ 2L=P).
n

With some conservative estimation (1.96 < 2 and p(1 -p) < 1/4 for p € [0,1]), taking n = 1200 gives

/1
lp-p[<2- - #0029<0.03.
n

This explains where the 1200 and 0.03 comes from.

< 1.96)

Beginning of April 26, 2021
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Monte-Carlo Integration (Application of LLIN)

1
Suppose g:[0,1] > R. What is f g(x) dz? How do we compute it in the 407 way?
0
Claim. We can let X ~U(0,1), X; ~ X be i.i.d. Then

[Coyar= [ o) de = Blo(x)]

It follows that

In pre-analysis style integration, a 1-fold integral takes n evaluations, a 2-fold integral takes n? evaluations, and a

k-fold integration takes n® integrations. This number grows exponentially[!]

Also, X need not to be uniform. Suppose X ~ f and X; ~ X i.i.d., then we can choose g that overweights the

important region of f (so g vanishes on where f is insignificant) with

> _ [~ 9@) -
S o de= [ 5ES 5@ dr=Bl(e/H(0)]

This is known as the importance sampling.

3.8 Simulating Randomness

Question. How to simulate randomness?

Answer. What'’s so-called a pseudo-random number generator that generates a number between 0 and 1. Nev-
ertheless these numbers are still from a formula, except the formula is huge and we will almost never notice the
pattern. In MATLAB this is the rand () function.

Since numbers are stored discretely in computers, we can only approximate the uniform distribution by discrete
ones. In particular, the computer would use a number from the following list:

1 2 253
26317253 177777253 1"

(253 — 1 is the current number MATLAB uses; machine eps?)
Beginning of April 28, 2021

For example, if we were to simulate rolling a dice, instead of actually asking the compute to roll a dice, we would call
the rand () function and the computer would return a (more or less) random number between 0 and 1 (specifically,
from the list above).

More generally, if Q = {w1,...,w, } where P({w;}) = P;, we let
70 =0,71 =P1, .y Tn = Y Ti.
i=1

It is clear that these r;’s partition the interval [0,1] — and we can simulate a random experiment using this trick!
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Say we called rand (). For example,

P({w4}) = P(rs <rand () <1y4).

We cannot really simulate an experience with an infinite sample space, but we can “truncate” €2 and lump all the
discarded terms into the last term that is not discarded. A concrete example: consider our same old example of
flipping a coin until head comes up:

Q={H,TH,TTH,TTTH,...}

1 1 1
so P, = §,P2 =7 , P, = o However, since we discard all the remaining ones, we add everything else to P,,
namely
<1 1
Pn = — + Z - =
72 2t
Pseudo RNG

How do we generate these random numbers then? It is done by a formula such that every time we call rand () it

produces a number between 0 and 1. The numbers should appear equally likely and independently. The algorithm

is supported by statistical tests to ensure that they are “random” enough (e.g. histogram / chi-squared test).

[ Definition 3.8.1

A Mersenne prime is a prime number of form 2P — 1 where p itself is a prime. There are infinitely many

Mersenne primes and the current biggest one is 282589933 _ 1 found in Dec 2018.

| Definition 3.8.2: PRNG |

Let p be a large prime number. We will construct a number generator (formula) that prodocues a number
from the set {1,2,...,p1}. Then the PRNG will return this number divided by p. There will be three

parameters involved:

(1) p a sufficiently large,

(2) Ry the seed, a number from {1,2,...,p1 }, and

(3) a, the multiplier, a number from {2,3,...,p—1}.
The seed is generated by

R, =a" Ry (mod p) = aR,,-1(mod p).

If p is not large enough, we will eventually run into a pattern once the list of numbers has been exhausted and it
starts over again!).
The seed only determines where on the list will we begin; what determines the list is a and p.

For example, if p=7,Ry =5,a =2:

R, | 2R, | [2R,]
5010 | 3
3| 6 6
6 | 12 5
5010 | 3
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and it becomes clear that this choice does not exhaust the list of all possible numbers between 1 and p -1, i.e.,
Ry (2) + Z[pZ. This is bad because the only numbers it will generate are 3/7,5/7, and 6/7, where numbers like
1/7,2/7, and 4/7 did not appear at all (but we want them for a PRNG). For this specific case, letting a = 3 fixes
the problem: 5-1-3-2-6-4-5. Then PRNG gives these numbers divided by 7, and that’s a nice PRNG for
this particular p. Therefore if we could find a nice a for p = 2°3 — 1, we would have a pretty nice PRNG. In Matlab

currently this a is 7°.

Simulating Continuous Random Variables

Suppose we can given a strictly (or not) increasing function F'(x) (so that it admits an inverse). Suppose it goes
from 0 to 1 on some specified interval. We want to produce a r.v. X with cdf F using a random variable U ~ U(0,1).

For X = F~Y(U), we have

P(X <z)=P(F ' (U)<z)=0(U < F(x)) = F(z).
This shows that X has the desired cdf F.
Example 3.8.3. Consider an exponential r.v. with fx(x)=ae™®” for z > 0 and some « > 0. The cdf is
Fx(x) = /O‘xozefo‘t dt =1-e".

The inverse of this cdf is
_In(1-w)

(07

Fﬁl(u) =

What if F~1 does not have a simple form, for example that of a normal distribution, which we cannot even write

down the cdf explicitly?

Rejection Sampling

[ Definition 3.8.4 |

A R? analogue of uniform random variables: let B ¢ R? and let X,Y be random variables. We say they
have a uniform distribution on B, i.e., (X,Y) ~ U(B), if, for every A c B,

area(A)

P((X,Y)eA) = area(B)’

The workaround? Instead of trying hard to find F~!, now we consider the graph of f and the area under f,
which forms a subset of R%. Put formally, define B = {(z,y) : 0 < y < f(z)} and let (X,Y) be a sample from
U(B):(X,Y)~U(B). Define A; to be the subset of B with x < Z, i.e., Az := {(x,y) € B:x <Z}. Then,

area(A;z)

P(X<7)=P((X,Y)eAz) = area(B)

=area(4;z) = [i f(z)dz = F(2),

thanks to the fact that area of B =1 as it’s the area under a pdf.
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So, the question becomes: how to generate a sample from U(B)?

1 Choose (X',Y')~C

if (X,Y')eB
X=X’

rectangle, for example, for f with compact support). Then we can | break

This is done by rejection sampling. Suppose we have some

N

larger set C o B that we already know how to sample (a nice

performance what’s known as the rejection sampling algorithm. else go to line 1 % reject

Then,

P(X<&)=P(X<z|(X"Y')eB)
_P((X',Y')e Az n B)
P((X'.Y") < B)
_area(Az n B)/area(C) area(Azn B)
~ area(B)/area(C)  area(B)

=area(A;) = F(2),
again, thanks to the fact that area(B) = 1.

Example 3.8.5. Suppose f(z) =0 unless x € [a,b] and f is uniformly bounded by M. Then we can simply
take C to be [a,b] x [0, M]. (We choose the box as small as possible to maximize efficiency.) To sample from

U(C), we can use Uy,Us ~U(0,1) i.i.d. Then

(X", Y") = (a+ (b-a)U, MUs) ~U(C).

Example 3.8.6. But what if f is not compactly supported? We can still apply the same idea but with
some modifications. Instead of covering the region by a box (which we can’t in this case), we can dominate
the cdf by another distribution, of which we know the distribution! One nice candidate is the exponential
distribution — as shown above, we can find explicit formula for its inverse, and it’s defined on [0, 00). We
can extend it into a “doubly exponential distribution” with domain (—o0, c0). Then we multiply it by some
constant M to bound our not so nicely-behaved cdf of f.

To put formally, let X ~ h and, given X, select Y ~ U(0, Mh(X)). Then (X,Y) ~ U(C) and we can do
rejection sampling once more. Notice that (X,Y) ~ U(C). Indeed,

fX,Y(x:y) = fX(iU)fY|X(y | )

_h@)xomne) _ xe
Mh(x) M

which is uniform on C.

End of Course
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