

MATH 425b Problem Set 1

Qilin Ye

January 21, 2021

Problem 1

(a) Prove that limits of nets in \mathbb{R} are unique: if $f : A \rightarrow \mathbb{R}$ is a net, $\lim f = L$, and $\lim f = L'$, then $L = L'$.

Proof. Given $\epsilon > 0$, there exist $a_1, a_2 \in A$ such that

$$\text{for all } a \in A, \begin{cases} a_1 \leq a \implies |f(a) - L| < \epsilon/2 \\ a_2 \leq a \implies |f(a) - L'| < \epsilon/2 \end{cases}.$$

By triangle inequality, if $a_1 \leq \tilde{a}$ and $a_2 \leq \tilde{a}$ (which is always possible since upper bounds exist; in fact defining $\tilde{a} := a_2$ if $a_1 \leq a_2$ and $\tilde{a} := a_1$ otherwise suffice), $|L - L'| \leq |L - f(\tilde{a})| + |f(\tilde{a}) - L'| < \epsilon$. Since ϵ is arbitrary, $L = L'$. \square

(b) Let $f, g : A \rightarrow \mathbb{R}$ be nets in \mathbb{R} . Prove that if $\lim f$ and $\lim g$ exist and $c \in \mathbb{R}$, then

$$\lim(f + cg) = \lim f + c \lim g, \quad \lim(f \cdot g) = \lim f \cdot \lim g, \quad \text{and} \quad \lim(f/g) = (\lim f)/(\lim g)$$

where, for the last one, g is assumed to be nonvanishing with $\lim g \neq 0$.

Proof. Define $F := \lim f$ and $G := \lim g$.

(I) Given $\epsilon > 0$, there exist $a_1, a_2 \in A$ such that

$$\text{for all } a \in A \begin{cases} a_1 \leq a \implies |f(a) - F| < \epsilon/(c+1) \\ a_2 \leq a \implies |g(a) - G| < \epsilon/(c+1) \end{cases}.$$

Then for any $\tilde{a} \in A$ such that $a_1 \leq \tilde{a} \wedge a_2 \leq \tilde{a}$, we have

$$\begin{aligned} |(f + cg)(\tilde{a}) - (\lim f + c \lim g)| &= |f(\tilde{a}) + cg(\tilde{a}) - F - cG| \\ &\leq |f(\tilde{a}) - F| + |cg(\tilde{a}) - cG| \\ &< \frac{\epsilon}{c+1} + \frac{c\epsilon}{c+1} = \epsilon. \end{aligned}$$

Since ϵ is arbitrary, $\lim(f + cg) = F + cG$, as desired.

(II) (Reverse thinking here; I dislike proofs that present a complicated δ like “magic” before actually deriving the $< \epsilon$ inequality. Therefore I would like to go “backwards” and show *where* that complicated δ comes from.) By using triangle inequality multiple times, we have

$$\begin{aligned}
 |f(a)g(a) - FG| &= |f(a)g(a) - f(a)G + f(a)G - FG| \\
 &\leq |f(a)g(a) - f(a)G| + |f(a)G - FG| \\
 &\leq |(f(a) - F)(g(a) - G)| + |Fg(a) - FG| + |f(a)G - FG| \\
 &\leq \underbrace{|f(a) - F||g(a) - G|}_{\text{both can be bounded}} + \underbrace{|F||g(a) - G|}_{\text{bounded}} + \underbrace{|G||f(a) - F|}_{\text{bounded}}.
 \end{aligned}$$

From this we already see that $(f \cdot g)(a)$ can be arbitrarily close to FG , i.e., $\lim(f \cdot g) = \lim f \cdot \lim g$. Explicit solution: given $\epsilon > 0$, $|f(a)g(a) - FG| < \epsilon$ whenever $|f(a) - F| < \delta$ and $|g(a) - G| < \delta$ where

$$\delta := \frac{\min(1, \epsilon)}{1 + |F| + |G|}.$$

(III) Let $\epsilon > 0$ be given. We have

$$\left| \frac{1}{g(x)} - \frac{1}{G} \right| = \left| \frac{G - g(x)}{Gg(x)} \right| = \underbrace{\frac{1}{|g(x)|}}_{\text{need to bound}} \overbrace{\frac{1}{|G|} |G - g(x)|}^{\text{one finite, one bounded}}.$$

Since $\lim g = G$, there exist $a_1, a_2 \in A$ such that

$$\text{for all } a \in A \quad \begin{cases} a_1 \leq a \implies |g(a) - G| < |G|/2 \\ a_2 \leq a \implies |g(a) - G| < |G|^2 \epsilon/2 \end{cases}.$$

Let $\tilde{a} \in A$ be an upper bound of a_1 and a_2 . It follows that $|g(\tilde{a}) - G| < \min(|G|/2, |G|^2 \epsilon/2)$. Therefore,

$$|G| \stackrel{\Delta\text{-ineq}}{\leq} \underbrace{|G - g(\tilde{a})| + |g(\tilde{a})|}_{< |G|/2} \implies |g(\tilde{a})| > |G|/2 \implies \frac{1}{|g(\tilde{a})|} < \frac{2}{|G|},$$

and thus

$$\left| \frac{1}{g(\tilde{a})} - \frac{1}{G} \right| < \frac{2}{|G|} \frac{1}{|G|} \frac{|G|^2 \epsilon}{2} = \epsilon.$$

Therefore we've just shown $\lim(1/g) = 1/\lim g$, and the claim of (III) follows from applying (II). \square

(c) For a closed interval $[a, b]$, let A be the set of partition pairs (P, T) of $[a, b]$. Define $(P, T) \leq (P', T')$ when P' is a refinement of P . Show that A is a directed set.

Proof. Criterion (1) is trivially true $P \subseteq P$. Criterion (2) is also true since $P \subset P'$ and $P' \subset P''$ implies $P \subset P''$. For criterion (3), suppose $(P, T) \leq (P_1, T_1)$ and $(P, T) \leq (P_2, T_2)$. Clearly if we let $P_3 := P_1 \cup P_2$ and define T_3 accordingly (i.e., depending on P_3), then $P \subset P_1 \subset P_3$ and $P \subset P_2 \subset P_3$ imply $(P, T) \leq (P_3, T_3)$. \square

(d) For a function $f : [a, b] \rightarrow \mathbb{R}$, the assignment $(P, T) \mapsto R(f, P, T)$ is a net from A to \mathbb{R} . Prove that f is Riemann integrable with integral I if and only if this net converges to I .

Proof. \implies : suppose that f is Riemann integrable and let $\epsilon > 0$ be given. Then there exists some $\delta > 0$ such that whenever $\text{mesh}(P) < \delta$, $|R(f, P, T), I| < \epsilon$. Let (P_0, T_0) be one of these partition pairs with $\text{mesh}(P) < \delta$. Suppose that the net does *not* converge to I . Then there exists $\epsilon > 0$ such that, for all partition pairs, in particular (P_0, T_0) , there exists (\tilde{P}, \tilde{T}) with $(P_0, T_0) \leq (\tilde{P}, \tilde{T})$, i.e., $P_0 \subset \tilde{P}$, such that $|R(f, \tilde{P}, \tilde{T}) - I| \geq \epsilon$. Notice that $P_0 \subset \tilde{P}$ means exactly $\text{mesh}(\tilde{P}) \leq \text{mesh}(P_0) < \delta$. Hence we simultaneously have $|R(f, \tilde{P}, \tilde{T}) - I| < \epsilon$ and $|R(f, \tilde{P}, \tilde{T}) - I| \geq \epsilon$, clearly a contradiction, so the net must converge to I .

\impliedby : suppose the net converges to I . Let $\epsilon > 0$ be given. By assumption we can find $(P_0, T_0) := a \in A$ such that $|R(f, \tilde{P}, \tilde{T}) - I| < \epsilon/2$ whenever $P_0 \subset \tilde{P}$. Notice that the net has no additional requirements on \tilde{T} as long as it forms a partition pair with \tilde{P} . Therefore, for such \tilde{P} we have

$$\begin{cases} |U(f, \tilde{P}) - I| < \epsilon/2 \\ |L(f, \tilde{P}) - I| < \epsilon/2 \end{cases} \xrightarrow{\Delta\text{-ineq}} |U(f, \tilde{P}) - L(f, \tilde{P})| < \epsilon.$$

Therefore f is Riemann integrable by *Riemann's Integrability Criterion*. \square

(e) Prove that if $f \in \mathcal{R}[a, b]$ then its Riemann integral I is unique.

Proof. Suppose f has Riemann integrals I and I' . Then

$$\int_a^b f(x) dx = I \wedge \int_a^b f(x) dx = I' \xrightarrow{(d)} \text{the corresponding nets converge to } I \wedge I' \xrightarrow{(a)} I = I'. \quad \square$$

(f) Prove that if $f, g \in \mathcal{R}[a, b]$ with Riemann integrals I and J respectively and $c \in \mathbb{R}$, then $f + cg \in \mathcal{R}[a, b]$ with Riemann integral $I + cJ$.

Proof. Define \bar{f} by $(P, T) \mapsto R(f, P, T)$ and \bar{g} by $(P, T) \mapsto R(g, P, T)$. Using (d) and (I) from (b), we have

$$\begin{aligned} \int_a^b f(x) dx = I \wedge \int_a^b g(x) dx = J &\xrightarrow{(d)} \lim \bar{f} = I \wedge \lim \bar{g} = J \\ &\xrightarrow{(b) \cdot (I)} \lim(\bar{f} + c\bar{g}) = I + cJ \\ &\xrightarrow{(d)} \int_a^b f(x) + cg(x) dx = I + cJ \end{aligned}$$

(and of course $f + cg \in \mathcal{R}[a, b]$ as implied by (d) as well). \square

(g) Generalize the definitions of nets and convergence of nets from the case of \mathbb{R} to the case of a general metric space X . (One can generalize even further to topological spaces X ; if X is a Hausdorff space, then limits of nets in X are unique.)

Solution: generalized definition. Let (X, d) be a metric space. We say $f : A \rightarrow X$ converges to a limit L , denoted as $\lim f = L$ if, for every $\epsilon > 0$, there exists $a_0 \in A$ such that for all $a \in A$ with $a_0 \leq a$, we have $d(f(a), L) < \epsilon$.

For convergence in Hausdorff spaces, we need to first generalize the definition again: for any neighborhood U of L , there exists $a_0 \in A$ such that $a \in U$ whenever $a_0 \leq a$.

Proof: Hausdorff \implies unique limits. Suppose for contradiction that f converges to distinct L and L' . On one hand, since H is Hausdorff, there exist neighborhoods U of L and U' of L' such that $U \cap U' = \emptyset$. On the other hand, by convergence of f , there exists $a_1, a_2 \in A$ such that

$$\text{for all } a \in A, \begin{cases} a_1 \leq a \implies a \in U \\ a_2 \leq a \implies a \in U' \end{cases}.$$

If we take any upper bound of a_1 and a_2 , say \tilde{a} , we immediately get a contradiction that $\tilde{a} \in U \cap U' = \emptyset$. Therefore $L = L'$, and limits of nets in Hausdorff spaces are unique. \square

Problem 2

Prove that if $f, g \in \mathcal{R}$ and $f \leq g$ then

$$\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx.$$

Proof. By the hint we first consider the convergent (since f, g are R.I.) nets $f, g : A \rightarrow \mathbb{R}$. By linearity ((b,II) & (b,III) above), the difference $g - f : A \rightarrow \mathbb{R}$ is also convergent with $\lim(g - f) = \lim g - \lim f$. Since $f(a) \leq g(a)$ for all $a \in A$, $(g - f)(a) \geq 0$ for all $a \in A$. It follows that $\lim(g - f)$ cannot be negative.

Suppose $\lim(g - f) = -M < 0$, then taking $\epsilon := M/2$ gives a contradiction of the convergence of $g - f$, for $|(g - f)(a) - (-M)| < \epsilon \iff -1.5M < (g - f)(a) < -0.5M < 0$ whereas $(g - f)$ is nonnegative, meaning no $a \in A$ satisfies this inequality.

Therefore $\lim g - \lim f \geq 0 \implies \lim f \leq \lim g$, and by (d) we conclude that $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$. \square