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Problem 1

(a) Prove that limits of nets in R are unique: if f: A >R is a net, lim f = L, and lim f = L/, then L =L'.

Proof. Given € > 0, there exist a1, as € A such that

afa = a)- L|<¢€/2
forall a € A, ' F(@) <</

as <a = |f(a) - L’|<e/2.

By triangle inequality, if a1 < @ and as < & (which is always possible since upper bounds exist; in fact
defining @ := ay if a; < as and a := a; otherwise suffice), |L - L'| < |L - f(a)| +|f(a) - L'| < €. Since € is
arbitrary, L = L'. O

(b) Let f,g: A — R be nets in R. Prove that if lim f and lim g exist and ¢ € R, then

Hm(f +cg) =lim f + climg, lim(f-g) =lim f-limg, and lim(f/g) = (lim f)/(limg)
where, for the last one, g is assumed to be nonvanishing with lim g # 0.
Proof. Define F :=lim f and G :=limg.

(I) Given € > 0, there exist aj,as € A such that

=0 = - Fl< +1
forallae A “u=a |/ (a) |<e/(c+1)

as <a = |g(a) - G|<e/(c+1)
Then for any @ € A such that a; < a A as < a, we have

(f +cg)(@) - (lim f + climg)| = |f(a) + cg(a) - F' - cG]
<|f(@) = Fl+eg(a) - G

ce

= €.
c+1 c+1

Since € is arbitrary, lim(f + cg) = F + ¢G, as desired.
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(IT) (Reverse thinking here; I dislike proofs that present a complicated § like “magic” before actually
deriving the < e inequality. Therefore I would like to go “backwards” and show where that complicated

d comes from.) By using triangle inequality multiple times, we have

F(@)g(a) - FG| = |f(@)g(a) - f(a)G + f()G - FG]
<If(@g(a) - [(a)Gl +|f (@)G - FG
<I(/(@) - F)(g(a) - G)| + [Fg(a) - FG| +|f ()G - FG
<|f(a) - Fllg(a) - G| +|F|lg(a) - G|+ |G| (a) - F|.

both can be bounded <o bounded <o bounded

From this we already see that (f-¢)(a) can be arbitrarily close to F'G, i.e., lim(f-g) =lim f -limg.
Explicit solution: given €> 0, |f(a)g(a) - FG| < e whenever |f(a) - F| < § and |g(a) - G| < § where

_ min(1,¢)
T 1+|F|+|G]

(IIT) Let € > 0 be given. We have

one finite, one bounded

1 1
= |G- g(z)].
l9(x)] |G
——
need to bound

‘ 1 1‘_‘(1—9(:0)

g(@) G| | Gy(x)

Since lim g = G, there exist a1, as € A such that

a1 fa — a)-G|<|G|/2
forallae A ! l9(a) N .
az <a = |g(a) - G| < |G|?¢/2

Let a € A be an upper bound of a; and ay. It follows that |g(a) - G| < min(|G|/2,|G|*¢/2). Therefore,

12
lg@)| 1GI

A-ineq N B _
Gl < |G -g(a)l+lg(a)] = lg(a)| > |G|/2 =
S —
<|G|/2

and thus

‘ 1 1‘ 2 1 |G%e
~ - 5 <77 =
g(a) G| [GlIG] 2

Therefore we’ve just shown lim(1/g) = 1/lim g, and the claim of (III) follows from applying (II). O

(c) For a closed interval [a,b], let A be the set of partition pairs (P,T) of [a,b]. Define (P,T) < (P’,T') when
P’ is a definement of P. Show that A is a directed set.
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Proof. Criterion (1) is trivially true P ¢ P. Criterion (2) is also true since P ¢ P’ and P’ ¢ P” implies

P c P". For criterion (3), suppose (P,T) < (P1,T1) and (P,T) < (P,,Tz). Clearly if we let P5 := PyuP, and

define T3 accordingly (i.e., depending on Ps), then P c P, ¢ Ps and P c Py c P3 imply (P, T) < (P3,T3). O

(d) For a function f : [a,b] - R, the assignment (P,T) —» R(f,P,T) is a net from A to R. Prove that f is
Riemann integrable with integral I if and only if this net converges to I.

Proof. =— : suppose that f is Riemann integrable and let ¢ > 0 be given. Then there exists some § > 0
such that whenever mesh(P) < ¢, |R(f,P,T),I| < e. Let (Py,Ty) be one of these partition pairs with
mesh(P) < §. Suppose that the net does not converge to I. Then there exists € > 0 such that, for all
partition pairs, in particular (Py,Tp), there exists (P,T) with (Py,Ty) < (P,T), i.e., Py c P, such that
|R(f, P,T) - I| > e. Notice that Py c P means exactly mesh(P) < mesh(Pp) < d. Hence we simutaneously
have |R(f,P,T) - I|< e and |R(f,P,T) - I| > €, clearly a contradiction, so the net must converge to I.

<= : suppose the net converges to I. Let € > 0 be given. By assumption we can find (Py,Tp) :=a € A
such that |R(f, P,T) - I| < ¢/2 whenever Py c P. Notice that the net has no additional requirements on T

as long as it forms a partition pair with P. Therefore, for such P we have

L EY IS el2 advea oy 1) < e
|L(f,P)-1|<¢/2

Therefore f is Riemann integrable by Riemann’s Integrability Criterion. O
(e) Prove that if f € R[a,b] then its Riemann integral I is unique.

Proof. Suppose f has Riemann integrals I and I’. Then

b b d
/ flx)yde=1n / f(x)da =1 <¥> the corresponding nets converge to &I’
a a
&orer, 0

(f) Prove that if f,g € R[a,b] with Riemann integrals I and J respectively and ¢ € R, then f + cg € R[a,b] with

Riemann integral I + cJ.

Proof. Define f by (P,T) ~ R(f,P,T) and g by (P,T) ~ R(g, P,T). Using (d) and (I) from (b), we have

b b ¢ _
ff(a:)dx:m[ g(z)dz =7 <2 limF=IAlimg=J

b). —
B0 Hm(f+cg)=IT+cJ

JON /bf(m)Jrcg(:c) de=1+cJ

(and of course f +cg € R[a,b] as implied by (d) as well). O

(g) Generalize the definitions of nets and convergence of nets from the case of R to the case of a general metric
space X. (One can generalize even further to topological spaces X; if X is a Hausdorfl space, then limits of

nets in X are unique.)
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Solution: generalized defintion. Let (X, d) be a metric space. We say f: A > X converges to a limit L,
denoted as lim f = L if, for every € > 0, there exists ag € A such that for all a € A with ag < a, we have
d(f(a),L) <e.
For convergence in Hausdorff spaces, we need to first generalize the definition again: for any neighborhood U
of L, there exists ag € A such that a € U whenever ag < a.
Proof: Hausdorff == unique limits. Suppose for contradiction that f converges to distinct L and L’. On
one hand, since H is Hausdorff, there exist neighborhoods U of L and U’ of L’ such that UnU’ = @. On
the other hand, by convergence of f, there exists ai,as € A such that
a1 <a = aeU

for all a € A, .
as<a = ael’

If we take any upper bound of a; and as, say a, we immediately get a contradiction that a e UnU’ = @.
O

Therefore L = L', and limits of nets in Hausdorff spaces are unique.

—>0 =D 0<

Problem 2

Prove that if f,g e R and f < g then ,
b
f flz)da < f g(x) dz.

Proof. By the hint we first consider the convergent (since f,g are R.I.) nets f,g: A - R. By linearity ((b,IT) &
(b,ITT) above), the difference g — f : A - R is also convergent with lim(g - f) = limg - lim f. Since f(a) < g(a)
forall ae A, (g— f)(a) 20 for all a € A. Tt follows that lim(g — f) cannot be negative.

Suppose lim(g— f) = -M <0, then taking e := M /2 gives a contradiction of the convergence of g f,
for [(g— f)(a) = (-M)| <e < -1.5M < (g- f)(a) < -0.5M < 0 whereas (g — f) is nonnegative,

meaning no a € A satisfies this inequality.

b b
Therefore limg —lim f >0 == lim f < limg, and by (d) we conclude that / f(z) de < f g(x) dz. O



