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Problem 1

(a) Prove that limits of nets in R are unique: if f ∶ A→ R is a net, lim f = L, and lim f = L′, then L = L′.

Proof. Given ϵ > 0, there exist a1, a2 ∈ A such that

for all a ∈ A,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1 ⪯ a Ô⇒ ∣f(a) − L ∣ < ϵ/2

a2 ⪯ a Ô⇒ ∣f(a) − L′∣ < ϵ/2
.

By triangle inequality, if a1 ⪯ ã and a2 ⪯ ã (which is always possible since upper bounds exist; in fact
defining ã ∶= a2 if a1 ⪯ a2 and ã ∶= a1 otherwise suffice), ∣L − L′∣ ⩽ ∣L − f(ã)∣ + ∣f(ã) − L′∣ < ϵ. Since ϵ is
arbitrary, L = L′.

(b) Let f, g ∶ A→ R be nets in R. Prove that if lim f and lim g exist and c ∈ R, then

lim(f + cg) = lim f + c lim g, lim(f ⋅ g) = lim f ⋅ lim g, and lim(f/g) = (lim f)/(lim g)

where, for the last one, g is assumed to be nonvanishing with lim g ≠ 0.

Proof. Define F ∶= lim f and G ∶= lim g.

(I) Given ϵ > 0, there exist a1, a2 ∈ A such that

for all a ∈ A

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1 ⪯ a Ô⇒ ∣f(a) − F ∣ < ϵ/(c + 1)

a2 ⪯ a Ô⇒ ∣g(a) −G∣ < ϵ/(c + 1)
.

Then for any ã ∈ A such that a1 ⪯ a ∧ a2 ⪯ a, we have

∣(f + cg)(ã) − (lim f + c lim g)∣ = ∣f(ã) + cg(ã) − F − cG∣

⩽ ∣f(ã) − F ∣ + ∣cg(ã) − cG∣

< ϵ

c + 1
+ cϵ

c + 1
= ϵ.

Since ϵ is arbitrary, lim(f + cg) = F + cG, as desired.
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(II) (Reverse thinking here; I dislike proofs that present a complicated δ like “magic” before actually
deriving the < ϵ inequality. Therefore I would like to go “backwards” and show where that complicated
δ comes from.) By using triangle inequality multiple times, we have

∣f(a)g(a) − FG∣ = ∣f(a)g(a) − f(a)G + f(a)G − FG∣

⩽ ∣f(a)g(a) − f(a)G∣ + ∣f(a)G − FG∣

⩽ ∣(f(a) − F )(g(a) −G)∣ + ∣Fg(a) − FG∣ + ∣f(a)G − FG∣

⩽ ∣f(a) − F ∣∣g(a) −G∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

both can be bounded

+ ∣F ∣
<∞

∣g(a) −G∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded

+ ∣G∣
<∞

∣f(a) − F ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bounded

.

From this we already see that (f ⋅ g)(a) can be arbitrarily close to FG, i.e., lim(f ⋅ g) = lim f ⋅ lim g.
Explicit solution: given ϵ > 0, ∣f(a)g(a) − FG∣ < ϵ whenever ∣f(a) − F ∣ < δ and ∣g(a) −G∣ < δ where

δ ∶= min(1, ϵ)
1 + ∣F ∣ + ∣G∣

.

(III) Let ϵ > 0 be given. We have

∣ 1

g(x)
− 1

G
∣ = ∣G − g(x)

Gg(x)
∣ = 1

∣g(x)∣
´¹¹¹¹¹¸¹¹¹¹¹¶

need to bound

one finite, one bounded
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

∣G∣
∣G − g(x)∣ .

Since lim g = G, there exist a1, a2 ∈ A such that

for all a ∈ A

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1 ⪯ a Ô⇒ ∣g(a) −G∣ < ∣G∣/2

a2 ⪯ a Ô⇒ ∣g(a) −G∣ < ∣G∣2ϵ/2
.

Let ã ∈ A be an upper bound of a1 and a2. It follows that ∣g(a)−G∣ <min(∣G∣/2, ∣G∣2ϵ/2). Therefore,

∣G∣
∆-ineq
⩽ ∣G − g(ã)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<∣G∣/2

+∣g(ã)∣ Ô⇒ ∣g(ã)∣ > ∣G∣/2 Ô⇒ 1

∣g(ã)∣
< 2

∣G∣
,

and thus
∣ 1

g(ã)
− 1

G
∣ < 2

∣G∣
1

∣G∣
∣G2∣ϵ
2
= ϵ.

Therefore we’ve just shown lim(1/g) = 1/ lim g, and the claim of (III) follows from applying (II).

(c) For a closed interval [a, b], let A be the set of partition pairs (P,T ) of [a, b]. Define (P,T ) ⪯ (P ′, T ′) when
P ′ is a definement of P . Show that A is a directed set.

2



MATH 425b Problem Set 1 YQL

Proof. Criterion (1) is trivially true P ⊆ P . Criterion (2) is also true since P ⊂ P ′ and P ′ ⊂ P ′′ implies
P ⊂ P ′′. For criterion (3), suppose (P,T ) ⪯ (P1, T1) and (P,T ) ⪯ (P2, T2). Clearly if we let P3 ∶= P1∪P2 and
define T3 accordingly (i.e., depending on P3), then P ⊂ P1 ⊂ P3 and P ⊂ P2 ⊂ P3 imply (P,T ) ⪯ (P3, T3).

(d) For a function f ∶ [a, b] → R, the assignment (P,T ) ↦ R(f,P, T ) is a net from A to R. Prove that f is
Riemann integrable with integral I if and only if this net converges to I.

Proof. Ô⇒ : suppose that f is Riemann integrable and let ϵ > 0 be given. Then there exists some δ > 0
such that whenever mesh(P ) < δ, ∣R(f,P, T ), I ∣ < ϵ. Let (P0, T0) be one of these partition pairs with
mesh(P ) < δ. Suppose that the net does not converge to I. Then there exists ϵ > 0 such that, for all
partition pairs, in particular (P0, T0), there exists (P̃ , T̃ ) with (P0, T0) ⪯ (P̃ , T̃ ), i.e., P0 ⊂ P̃ , such that
∣R(f, P̃ , T̃ ) − I ∣ ⩾ ϵ. Notice that P0 ⊂ P̃ means exactly mesh(P̃ ) ⩽ mesh(P0) < δ. Hence we simutaneously
have ∣R(f, P̃ , T̃ ) − I ∣ < ϵ and ∣R(f, P̃ , T̃ ) − I ∣ ⩾ ϵ, clearly a contradiction, so the net must converge to I.
⇐Ô : suppose the net converges to I. Let ϵ > 0 be given. By assumption we can find (P0, T0) ∶= a ∈ A

such that ∣R(f, P̃ , T̃ )− I ∣ < ϵ/2 whenever P0 ⊂ P̃ . Notice that the net has no additional requirements on T̃

as long as it forms a partition pair with P̃ . Therefore, for such P̃ we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣U(f, P̃ ) − I ∣ < ϵ/2

∣L(f, P̃ ) − I ∣ < ϵ/2

∆-ineq
ÔÔÔ⇒ ∣U(f, P̃ ) −L(f, P̃ )∣ < ϵ.

Therefore f is Riemann integrable by Riemann’s Integrability Criterion.

(e) Prove that if f ∈R[a, b] then its Riemann integral I is unique.

Proof. Suppose f has Riemann integrals I and I ′. Then

∫
b

a
f(x) dx = I ∧ ∫

b

a
f(x) dx = I ′

(d)
⇐⇒ the corresponding nets converge to I& I ′

(a)
⇐⇒ I = I ′.

(f) Prove that if f, g ∈ R[a, b] with Riemann integrals I and J respectively and c ∈ R, then f + cg ∈ R[a, b] with
Riemann integral I + cJ .

Proof. Define f by (P,T )↦ R(f,P, T ) and g by (P,T )↦ R(g,P, T ). Using (d) and (I) from (b), we have

∫
b

a
f(x) dx = I ∧ ∫

b

a
g(x) dx = J

(d)
⇐⇒ lim f = I ∧ lim g = J

(b).(I)
Ô⇒ lim(f + cg) = I + cJ
(d)
⇐⇒ ∫

b

a
f(x) + cg(x) dx = I + cJ

(and of course f + cg ∈R[a, b] as implied by (d) as well).

(g) Generalize the definitions of nets and convergence of nets from the case of R to the case of a general metric
space X. (One can generalize even further to topological spaces X; if X is a Hausdorff space, then limits of
nets in X are unique.)
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Solution: generalized defintion. Let (X,d) be a metric space. We say f ∶ A → X converges to a limit L,
denoted as lim f = L if, for every ϵ > 0, there exists a0 ∈ A such that for all a ∈ A with a0 ⪯ a, we have
d(f(a), L) < ϵ.

For convergence in Hausdorff spaces, we need to first generalize the definition again: for any neighborhood U

of L, there exists a0 ∈ A such that a ∈ U whenever a0 ⪯ a.

Proof: Hausdorff Ô⇒ unique limits. Suppose for contradiction that f converges to distinct L and L′. On
one hand, since H is Hausdorff, there exist neighborhoods U of L and U ′ of L′ such that U ∩U ′ = ∅. On
the other hand, by convergence of f , there exists a1, a2 ∈ A such that

for all a ∈ A,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1 ⪯ a Ô⇒ a ∈ U

a2 ⪯ a Ô⇒ a ∈ U ′
.

If we take any upper bound of a1 and a2, say ã, we immediately get a contradiction that a ∈ U ∩ U ′ = ∅.
Therefore L = L′, and limits of nets in Hausdorff spaces are unique.

Problem 2

Prove that if f, g ∈R and f ⩽ g then

∫
b

a
f(x) dx ⩽ ∫

b

a
g(x) dx.

Proof. By the hint we first consider the convergent (since f, g are R.I.) nets f, g ∶ A → R. By linearity ((b,II) &
(b,III) above), the difference g − f ∶ A → R is also convergent with lim(g − f) = lim g − lim f . Since f(a) ⩽ g(a)
for all a ∈ A, (g − f)(a) ⩾ 0 for all a ∈ A. It follows that lim(g − f) cannot be negative.

Suppose lim(g−f) = −M < 0, then taking ϵ ∶=M/2 gives a contradiction of the convergence of g−f ,
for ∣(g − f)(a) − (−M)∣ < ϵ ⇐⇒ −1.5M < (g − f)(a) < −0.5M < 0 whereas (g − f) is nonnegative,
meaning no a ∈ A satisfies this inequality.

Therefore lim g − lim f ⩾ 0 Ô⇒ lim f ⩽ lim g, and by (d) we conclude that ∫
b

a
f(x) dx ⩽ ∫

b

a
g(x) dx.
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