
HOMEWORK, WEEK 10

This assignment is due Monday, March 29. Handwritten solutions are acceptable but
LaTeX solutions are preferred. You must write in full sentences (abbreviations and common
mathematical shorthand are fine).

(1) Let V be a finite-dimensional vector space over R and let ‖ · ‖1, ‖ · ‖2 be two norms
on V . Prove that ‖ · ‖1 and ‖ · ‖2 are comparable, i.e. that there exist C1, C2 > 0
such that ‖v‖1 ≤ C1‖v‖2 and ‖v‖2 ≤ C2‖v‖1 for all v ∈ V .

Hint: It’s best to approach this problem in multiple steps. Let β = {e1, . . . , en}
be a basis for V ; define a norm ‖ · ‖β on V by ‖

∑n
i=1 v

iei‖β = (
∑n

i=1(v
i)2)1/2 (in

other words, you use β to identify V with Rn, and ‖ · ‖β comes from the standard
Euclidean norm on Rn).

The first step is to show that the function ‖ · ‖1 : V → R is continuous when
V is given the metric induced by ‖ · ‖β. Indeed, you can even show it’s uniformly
continuous. Given ε > 0, you want to find δ > 0 such that if v, w ∈ V and ‖v−w‖β <
δ, then |‖v‖1 − ‖w‖1| < ε. Show that |‖v‖1 − ‖w‖1| ≤ ‖v − w‖1 follows from the
triangle inequality for ‖ · ‖1 (rewrite it as a double inequality).

Since ‖ · ‖β is defined in terms of basis coordinates, expand out v and w in coor-
dinates and use the triangle inequality for ‖ · ‖1 to estimate ‖v − w‖1. Try to find δ
such that if the Euclidean distance between (the coordinate vectors of) v and w is
less than δ, then ‖v − w‖1 < ε.

Thus, ‖ · ‖1 is continuous from (V, ‖ · ‖β) to R. Consider the restriction of ‖ · ‖1
to the ‖ · ‖β-unit sphere S = {v ∈ V | ‖v‖β = 1}. Use the Heine–Borel theorem to
show that S is compact. From there, show that there exist m,M > 0 such that for
all v ∈ S, we have m ≤ ‖v‖1 ≤M .

Now you can show that ‖ · ‖1 and ‖ · ‖β are comparable. Indeed, show that for
all v ∈ V , we have ‖v‖1 ≤ M‖v‖β and ‖v‖β ≤ (1/m)‖v‖1. When v = 0, the
inequalities are equalities; assume v 6= 0 and consider u = v

‖v‖β
∈ S. Apply the

previous paragraph to u.

It follows that ‖ · ‖β and ‖ · ‖1 are comparable; equally well, ‖ · ‖β and ‖ · ‖2 are
comparable. To finish the problem, show that comparability of norms is a transitive
relation (if ‖ · ‖1 is comparable to ‖ · ‖2 and ‖ · ‖2 is comparable to ‖ · ‖3, then
‖ · ‖1 is comparable to ‖ · ‖3). Since comparability is clearly reflexive and symmetric,
comparability is an equivalence relation on norms. Conclude that the given norms
‖ · ‖1 and ‖ · ‖2 on V are comparable.

(2) We return to Fourier analysis for another round of non-rigorous computations. The
Fourier transform is very important to know about, although it takes work to set up
precisely (while the usual treatments are based on Lebesgue integration, Stein and
Shakarchi give a treatment that avoids it). Along with Fourier transforms, one must
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often consider Dirac δ-functions which are treated using Laurent Schwartz’s theory
of distributions, again requiring some technical machinery.

In this problem we will consider Fourier transforms heuristically for functions f :

R → C. In the general theory of Pontryagin duality, R̂ ∼= R, so f should be “dual”
to another function f̂ : R → C (the Fourier transform of f). The general theory
suggests the following definition: for ξ ∈ R, define

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξxdx

(we will not worry for now about whether such integrals make sense). The values f̂(ξ)
of the Fourier transform of f are analogous to the Fourier coefficients of a periodic
function, but they are defined for all real ξ rather than just for integers k, and the
integral is over the whole real line.

For nice enough periodic functions, we could write f as the limit of a (convergent)
Fourier series; analogously, for nice enough f : R→ C, we have the “Fourier inversion
formula”

f(x) =

∫ ∞
−∞

f̂(ξ)e2πiξxdξ.

In particular, for f = δ0, we have δ̂0(ξ) = e−2πiξ·0 = 1 for all ξ, and the Fourier
inversion formula reads

δ0(x) =

∫ ∞
−∞

e2πiξxdξ.

This special case of the formula implies the general case (heuristically), since

f(x) =

∫ ∞
−∞

f(y)δ0(x− y)dy

=

∫ ∞
−∞

f(y)

∫ ∞
−∞

e2πiξ(x−y)dξdy

=

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−2πiξydy

)
e2πiξxdξ

=

∫ ∞
−∞

f̂(ξ)e2πiξxdξ.

Convolution of functions f, g : R→ C is defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy,

and it corresponds to multiplication of Fourier transforms: we have

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

(note that f ∗ g = g ∗ f).
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Problem. Show (heuristically) that differentiating a function f corresponds to mul-

tiplying its Fourier transform f̂(ξ) by the linear function 2πiξ, i.e. that

d̂f

dx
(ξ) = 2πiξf̂(ξ).

You may use integration by parts while taking all boundary values at ±∞ to be zero,
as well as other heuristic manipulations like differentiating under integral signs.

Hint: Once you move the derivative d
dx

from f to the exponential factor in the

integral defining d̂f
dx

(ξ), you know how to differentiate exponential functions.

(3) The result of the above problem is very useful when solving differential equations,
especially in the case of equations like

dnf

dxn
+ cn−1

dn−1f

dxn−1
+ · · ·+ c0f = g,

where f is the unknown function and g is some given function (the “inhomogeneous
term” of a linear inhomogeneous differential equation).

Problem. Show heuristically that if f is a (sufficiently nice) function from R to C
with Fourier transform f̂ , then(
dnf

dxn
+ cn−1

dn−1f

dxn−1
+ · · ·+ c0f

)∧
(ξ) =

(
(2πiξ)n + cn−1(2πiξ)

n−1 + · · ·+ c0
)
f̂(ξ).

Hint: Just apply the previous problem.

(4) If we can find all solutions to the homogeneous equation

dnf

dxn
+ cn−1

dn−1f

dxn−1
+ · · ·+ c0f = 0

(e.g. by finding n independent solutions, at which point the Picard–Lindelöf theorem
guarantees we’ve found them all), then to find all solutions to the original inhomoge-
neous equation, we only need to find one solution (all others are obtained by adding
a solution of the homogeneous equation).

If f solves the inhomogeneous equation for a given inhomogeneous term g, the
previous problem implies that we can write(

(2πiξ)n + cn−1(2πiξ)
n−1 + · · ·+ c0

)
f̂(ξ) = ĝ(ξ).

If we are looking for a solution to the equation with inhomogeneous term g, we can
use the above equation to solve for f̂(ξ) and then recover f using Fourier inversion.

Problem. Using Fourier analysis (rather than another technique like undetermined
coefficients or variation of parameters), find all solutions f : R→ C to the differential
equation

f ′′(t) + 4f ′(t) + 3f(t) = e4πit.

(i.e. all differentiable functions f : R→ C satisfying the equation). Prove rigorously
that your answer is correct. You may use the Picard–Lindelof theorem with global
uniqueness for vector fields F : U → Cm where U ⊂ Cm is open (this version
follows from the real version and the identification Cm ∼= R2m). When arguing about
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uniqueness of solutions to nth-order differential equations, you do not need to go into
detail about how to translate between higher-order equations and the corresponding
first-order equations.

Hint: Use heuristic reasoning to find the solutions first, then do the rigorous part
later. Compute the Fourier transform ĝ(ξ) where g(t) = e4πit; it should be a delta
function. Then, using the previous problem and dividing, you can get a formula
for f̂(ξ). Plug this into the Fourier inversion formula to get a formula for f(t); the
presence of the δ function should get rid of the integral without the need for any
computations.

Once you’ve found your solution f , check rigorously that it’s actually a solution.
Now show (as mentioned above) that any other solution f̃ must be equal to f + h
for some h solving the homogeneous equation D(h) = 0. Find two linearly inde-
pendent solutions to the homogeneous equation f ′′ + 4f ′ + 3f = 0; check rigorously
that they’re solutions, and show that their initial-condition vectors (f(0), f ′(0)) are
linearly independent in R2. Use Picard’s theorem to show that any solution h to the
homogeneous equation must be a linear combination of your two explicit solutions.

Remark. Of course, the above analysis assumes that ĝ(ξ) makes sense for ξ on
the real line—this is more plausible for some inhomogeneous terms g than for others.
The Fourier transform as we’ve formulated is especially useful for periodic or “steady-
state” inhomogeneous terms like e4πit, since the Fourier transform for such a function
makes sense and is a Dirac delta function on the real line. These differential equations
commonly arise as the equation satisfied by the output voltage of some circuit whose
input voltage is g(t), and Fourier analysis is useful for understanding the steady-state
frequency response of the circuit.

When the inhomogeneous term is of a more general form, say e4t rather than
e4πit, then existence of the Fourier transform is more subtle (e.g. for g(t) = e4t, we
should really be looking at ĝ(ξ) for ξ of the form a − 2

π
i for a ∈ R). Since we are

allowing complex ξ, we can equivalently view things in terms of the “bilateral Laplace
transform”

B(g)(s) :=

∫ ∞
−∞

g(t)e−stdt

which is typically only defined on a subset (e.g. a line) of s-values in the complex
plane (s and ξ are related by s = 2πiξ). A more general version of Fourier inversion,
the Mellin inversion formula, then lets us reconstruct a function from its bilateral
Laplace transform.

An especially important type of inhomogeneous term in applications is a function
g(t) which is zero for t < 0 but becomes nonzero for t ≥ 0 (think of a circuit sitting
on the table idle until you push the “on” button). For such functions, the integral
from −∞ to 0 in the bilateral Laplace transform B(g)(s) vanishes, so we get the
ordinary Laplace transform

L(g)(s) :=

∫ ∞
0

g(t)e−stdt.
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For general g, L(g) is often defined on a larger subset of the complex plane than is
B(g) (e.g. a half-plane rather than just a line).

A useful fact to remember is that if g(t) grows like ect for c ∈ R, then L(g)(s) is
defined on the half-plane consisting of s with real part ≥ c. For e.g. the bilateral
Laplace transform applied to g(t) = ect, we need both integrals

∫ 0

−∞ and
∫∞
0

to exist,
so we should restrict to the intersection of two half planes, namely the line of s with
real part exactly equal to c. Another related fact is that g is compactly supported,
i.e. g vanishes for both sufficiently large negative t and sufficiently large positive t,
then the bilateral Laplace transform of g exists (and is holomorphic) on the whole
complex plane (equivalently, this is true for the Fourier transform of g; modulo details
this is called the Paley–Weiner theorem).

Even for homogeneous terms g(t) which do not vanish for t < 0, it is common to
solve inhomogeneous ODEs using the Laplace transform rather than Fourier trans-
forms. The reasoning is similar to what we did in this problem, although it’s not en-
tirely parallel; due to the boundary term at zero, Laplace transforms turn derivatives
into slightly more complicated polynomial expressions, and to perform the inversion
step one typically uses a partial-fractions decomposition plus a knowledge of how to
invert the pieces that arise.

(5) An interesting fact conceptually is that to consider different inhomogeneous terms g
separately: we can focus on the special case where g is a Dirac delta function and
deduce everything else from that case.

Definition. (Heuristic) We say F is a fundamental solution (or Green’s function)
for the differential operator

D :=
dn

dxn
+ cn−1

dn−1

dxn−1
+ · · ·+ c0

if we have

D(F ) = δ0.

Since the delta function is a bit mysterious, it can be helpful to think in terms of
Fourier transforms:

Definition. (Heuristic) We say F is a fundamental solution (or Green’s function)
for the differential operator D above if we have

D̂(F )(ξ) = 1

for all ξ ∈ R.

We can solve this equation for F̂ (ξ) as above, obtaining

F̂ (ξ) =
1

(2πiξ)n + cn−1(2πiξ)n−1 + · · ·+ c0
,

and reconstruct F from the Fourier inversion formula (this will typically involve
integrals that cannot be evaluated using elementary functions).
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Problem. Show heuristically that if D is the above differential operator, g is any
inhomogeneous term, and F is a fundamental solution for D, then we have

D(F ∗ g) = g,

i.e. the convolution f := F ∗ g solves the inhomogeneous equation D(f) = g.

Hint: Show that both sides have the same Fourier transform; start by using a

previous problem to write ̂D(F ∗ g) as a polynomial times F̂ ∗ g.

Remark. Fundamental solutions or Green’s functions are often useful in solving
boundary value problems, which we will not discuss. For instance, rather than looking
for a locally-defined solution to a second-order ODE with prescribed value and first
derivative at a point, one can look for a solution to the same ODE on a closed
interval [a, b] with prescribed values at both a and b. Constructing a Green’s function
satisfying suitable properties is one way to solve such problems.


