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Problem 1

Prove that all norms on a finite-dimensional vector space are equivalent.

Proof. Let V be a vector space with β = {e1, . . . , en} a basis for it. Define

∥x∥β = (
n

∑
i=1
∣αi∣2)

1/2

where x =
n

∑
i=1

αiei.

It immediately follows that ∥ ⋅ ∥β defines a norm on V . Furthermore, (V, ∥ ⋅ ∥β) ≡ Rn (isometrically isomorphic).
To see this, consider T ∶ Rn → V defined by

T (α1, . . . , αn) ∶=
n

∑
i=1

αiei.

Since β is a basis of V , each x ∈ V is uniquely represented by this basis. Hence T is linear and bijective. In
addition,

∥T (α1, . . . , αn)∥β = (
n

∑
i=1
∣αi∣2)

1/2

= ∣(α1, . . . , αn)∣st.

(The RHS is the standard Euclidean norm on Rn.) Therefore we have used β to identify V with Rn.
Now, let ∥ ⋅ ∥ be any other norm. By Cauchy Schwarz, we have

∥x∥ = ∥
n

∑
i=1

αiei∥ ⩽
n

∑
i=1
∣αi∣∥ei∥ ⩽ (

n

∑
i=1
∣αi∣2)

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥x∥β

(
n

∑
i=1
∥ei∥2)

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=c2 a constant

= c2∥x∥β . (1)

Now it remains to show that there exists a c1 > 0 such that c1∥x∥β ⩽ ∥x∥. We first show that the mapping
x↦ ∥x∥ is continuous with respect to ∥ ⋅ ∥β : indeed, by triangle inequality we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥x∥ ⩽ ∥x − y∥ + ∥y∥

∥y∥ ⩽ ∥x∥ + ∥y − x∥
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥x∥ − ∥y∥ ⩽ ∥x − y∥

∥y∥ − ∥x∥ ⩽ ∥y − x∥
Ô⇒ ∣∥x∥ − ∥y∥∣ ⩽ ∥x − y∥ ⩽ c2∥x − y∥β .

Now consider the unit sphere with respect to ∥ ⋅ ∥β :

S ∶= {v ∈ V ∶ ∥v∥β = 1}.

Certainly, by the isometry to Rn and Heine-Borel theorem, S is compact. Therefore ∥x∥ is bounded on S and
it also attain its bounds. In particular, the lower bound c1 > 0 because it is the norm of some x′ ∈ S (so ∥x′∥ ≠ 0
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or otherwise x′ = 0 ∉ S). For any arbitrary (nonzero) x ∈ V , we have

c1 ⩽
XXXXXXXXXXX

x

∥x∥β

XXXXXXXXXXX
= ∥x∥
∥x∥β

Ô⇒ c1∥x∥β ⩽ ∥x∥. (2)

Combining (1) and (2) we see that any arbitrary ∥ ⋅ ∥ is equivalent to ∥ ⋅ ∥β . Now, let ∥ ⋅ ∥1, ∥ ⋅ ∥2 be two norms
on V . We know both are equivalent to ∥ ⋅ ∥β . Therefore there exist c1, c2, d1, d2 > 0 such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c1∥x∥β ⩽ ∥x∥1 ⩽ c2∥x∥β

d1∥x∥β ⩽ ∥x∥2 ⩽ d2∥x∥β
Ô⇒ c1

d2
∥x∥2 ⩽ ∥x∥1 ⩽

c2
d1
∥x∥2.

Therefore ∥ ⋅ ∥1, ∥ ⋅ ∥2 are equivalent, and the claim follows.

Problem 2

Show heuristically that differentiating a function f corresponds to multiplying its Fourier transform f̂(ξ) by
the linear function 2πiξ, i.e., that

f̂ ′ = 2πiξf̂(ξ).

Proof. With the assumptions provided by the hint,

f̂ ′(ξ) = ∫
∞

−∞
f ′(x̃)e−2πiξx̃ dx̃

⎡⎢⎢⎢⎢⎣

u = e−2πiξx du = −2πiξe−2πiξxdx
dv = f ′(x)dx v = f(x)

⎤⎥⎥⎥⎥⎦

= f(x̃)e−2πiξx̃ ∣
∞

x̃=−∞
− (−2πiξ)∫

∞

−∞
f(x̃)e−2πiξx̃ dx̃

= 2πiξf̂(ξ).

Problem 3

Show heuristically that, for sufficiently nice f ∶ R→ C, if

g ∶= dnf

dxn
f + cn−1

dn−1f

dxn−1 + ⋅ ⋅ ⋅ + c0f,

then
ĝ(ξ) = [(2πiξ)n + cn−1(2πiξ)n−1 + ⋅ ⋅ ⋅ + c0] f̂(ξ).

Proof. By applying the result from the previous problem inductively, we have

f̂ (k)(ξ) = (2πiξ)kf̂(ξ).

It is also clear that (̂cf)(ξ) = cf̂(ξ). The claim the follows.

Problem 4

Using Fourier analysis, find all solutions f ∶ R→ C to the differential equation

f ′′(t) + 4f ′(t) + 3f(t) = e4πit.
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Solution

Let g(t) ∶= e4πit. Then

ĝ(ξ) = ∫
∞

−∞
g(t)e−2πiξt dt = ∫

∞

−∞
e4πite−2πiξt dt

= ∫
∞

−∞
e2πit(2−ξ) dt = δ(2 − ξ).

Notice from the previous problem that

[(2πiξ)2 + 4(2πiξ) + 3] f̂(ξ) = ĝ(ξ).

Therefore, we can rewrite f̂(ξ) and compute f(x) from f̂(ξ) using the Fourier inversion formula:

f(x) = ∫
∞

−∞
f̂(ξ)e2πiξx dξ

= ∫
∞

−∞
δ(2 − ξ) e2πiξx

(2πiξ)2 + 4(2πiξ) + 3
dξ

= e2πiξx

(2πiξ)2 + 4(2πiξ) + 3

RRRRRRRRRRRξ=2

= e4πix

−16π2 + 16πi + 3
.

It is easy to check that this indeed solves the inhomogeneous part:

f ′′(t) + 4f ′(t) + 3f(t) = 1

−16π2 + 16πi + 3
(−16π2e4πix + 16πie4πix + 3e4πix) = e4πix.

Claim: the general solution is of form

f(t) = c1e−t + c2e−3t +
e4πix

−16π2 + 16πi + 3
.

In other words, any solution to the homogeneous DE f ′′9t)+4f ′(t)+3f(t) = 0 is a linear combination of e−t

and e−3t. To see this, we first apply reduction of order and rewrite the DE as
⎡⎢⎢⎢⎢⎣

f ′(t)
f ′′(t)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0 1

−3 −4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

f(t)
f ′(t)

⎤⎥⎥⎥⎥⎦
. (1)

It follows that f solves the DE if and only if the above vector equation holds. By inspection, we can
immediately tell that e−t and e−3t are two solutions to the DE. Notice that

⎡⎢⎢⎢⎢⎣

e−0

−e−0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎣

e−3⋅0

−3e−3⋅0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1

−3

⎤⎥⎥⎥⎥⎦

are linearly independent, so they span R2. Now we re-write (1) as a vector function F ∶ R2 → R2 defined by

F [(u(t), v(t)]T =
⎡⎢⎢⎢⎢⎣

0 1

−3 −4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

u(t)
v(t)

⎤⎥⎥⎥⎥⎦
.

Clearly F is locally Lipschitz as all entries in the matrix are finite. Now we invoke the Picard-Lindelöf theo-
rem: given any initial condition u(0) = u0, v(0) = v0, there exists (a unique) γ(t) = [γu(t), γv(t)]T satisfying
(1). On the other hand, γ(t) ∈ R2 = span{[1,−1]T , [1,−3]T }. Therefore γu(t) is a linear combination of e−t

and e−3t[!] This means precisely that any solution to the homogeneous system is of form c1e
−t + c2e−3t.
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Problem 5

Show heuristically that if D is the above differential operator, g any inhomogeneous term, and F a funda-
mental solution for D, then

D(F ∗ g) = g,

i.e., the convolution f ∶= F ∗ g solves the inhomogeneous equation D(f) = g.

Proof. Let f ∶= F ∗ g. Notice that the Fourier coefficient D̂(f)(ξ) (by problem 3) is

[(2πiξ)n + cn−1(2πiξ)n−1 + ⋅ ⋅ ⋅ + c0] f̂(ξ) = [. . . ]F̂ ĝ = [. . . ] ⋅ ĝ

[. . . ]
= ĝ.

(The first equation directly follows from the fact that F̂ ∗ g = F̂ ĝ.)
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