

MATH 425b Homework 11

Qilin Ye

April 9, 2021

Problem 1

Let $\mathcal{F}(X)$ denote the vector space of *suitably nice* \mathbb{C} -valued functions on X . Show heuristically that the following commutes when the “F.T.” arrows point to the right:

$$\begin{array}{ccc} \mathcal{F}(\mathbb{R}) & \xleftarrow{\text{F.T.}} & \mathcal{F}(\mathbb{R}) \\ \downarrow \text{resum} & & \downarrow \text{sample} \\ \mathcal{F}(\mathbb{R}/\mathbb{Z}) & \xleftarrow{\text{F.T.}} & \mathcal{F}(\mathbb{Z}) \end{array}$$

i.e., for $f \in \mathcal{F}(\mathbb{R})$ we have

$$\text{sample}(\text{F.T.}(f)) = \text{F.T.}(\text{resum}(f)). \quad (1)$$

Also show heuristically that the diagram commutes when the “F.T.” arrows point to the left, i.e., for $f \in \mathcal{F}(\mathbb{R})$,

$$\text{resum}(\text{F.T.}(f)) = \text{F.T.}(\text{sample}(f)). \quad (2)$$

Proof. We first show (1), i.e., commutativity when the F.T. arrows point to the right. For $n \in \mathbb{Z}$, the n^{th} Fourier coefficient of $\text{resum}(f)$ is

$$\begin{aligned} \widehat{\text{resum}(f)}(n) &= \int_0^1 e^{-2\pi in\theta} (\text{resum}(f))(\theta) d\theta \\ &= \int_0^1 e^{-2\pi in\theta} \sum_{k=-\infty}^{\infty} f(\theta + k) d\theta \\ &= \sum_{k=-\infty}^{\infty} \int_0^1 e^{-2\pi in\theta} f(\theta + k) d\theta \\ &= \sum_{k=-\infty}^{\infty} \int_k^{k+1} e^{-2\pi inu} f(u) du \\ &= \int_{-\infty}^{\infty} e^{-2\pi inu} f(u) du = \hat{f}(n). \end{aligned}$$

The LHS gives exactly the same thing when evaluated at an integer n . Therefore (1) holds.

Now we show (2), i.e., commutativity when the F.T. arrows point to the left. Define a reflection function

$$f \mapsto \text{refl}(f) \text{ by } (\text{refl}(f))(x) = (x) - f(-x).$$

Notice that

$$(\text{F.T.}(f))(\xi) = \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \xi x} dx \quad \text{and} \quad f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i \xi x} d\xi$$

which give

$$(\text{F.T.}^2(f))(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{-2\pi i \xi x} d\xi = f(-x).$$

Therefore $(\text{F.T.})^2 = \text{refl}$. Thus, if we apply F.T. one more time to both sides of (2), the RHS simply becomes $\text{refl}(\text{sample}(f)) : n \mapsto f(-n)$. The LHS, on the other hand, becomes

$$\begin{aligned} \text{F.T.} \circ \text{resum} \circ \text{F.T.} &= [\text{F.T.} \circ \text{resum}] \circ \text{F.T.} \\ &= \text{sample} \circ \text{F.T.} \circ \text{F.T.} && \text{(by the previous part)} \\ &= \text{sample} \circ \text{refl}. \end{aligned}$$

It is clear that the $\text{sample} \circ \text{refl} = \text{refl} \circ \text{sample}$: for $n \in \mathbb{Z}$,

$$[\text{sample} \circ \text{refl}(f)](n) = [\text{sample}(f)](-n) = f(-n) = [\text{refl} \circ \text{sample}(f)](n).$$

Thus (2) holds and we are done. \square

Problem 2

Heuristically deduce the *Poisson summation formula*: for suitably nice $f \in \mathcal{F}(\mathbb{R})$, we have

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n).$$

Proof. Recall from the first problem that

$$\text{resum}(\text{F.T.}(f)) = \text{F.T.}(\text{sample}(f)).$$

Let $\xi = 0$. The RHS then becomes

$$\sum_{n=-\infty}^{\infty} f(n) e^{-2\pi i n \cdot 0} = \sum_{n=-\infty}^{\infty} f(n).$$

On the other hand, the LHS gives

$$\sum_{n=-\infty}^{\infty} (\text{F.T.}(f))(\xi + n) = \sum_{n=-\infty}^{\infty} (\text{F.T.}(f))(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n). \quad \square$$

Problem 3

Let $f, g \in \mathcal{F}(\mathbb{R})$ and suppose that $\hat{f}(\xi) = \hat{g}(\xi) = 0$ unless $\xi \in (0, 1)$, i.e., \hat{f} and \hat{g} are supported on the interior of the compact interval $[0, 1]$. Assuming that $f(n) = g(n)$ for all $n \in \mathbb{Z}$, show heuristically that $f = g$.

Proof. To show $f = g$, it suffices to show $\hat{f} = \hat{g}$. Since $\hat{f} \equiv \hat{g} \equiv 0$ outside $(0, 1)$ already, $\hat{f} = \hat{g}$ if and only if $\hat{f}(\xi) = \hat{g}(\xi)$ for all $\xi \in (0, 1)$. Notice that, for $\xi \in (0, 1)$,

$$\hat{f}(\xi) = \hat{g}(\xi) \iff \sum_{n=-\infty}^{\infty} \hat{f}(\xi + n) = \hat{f}(\xi) = \hat{g}(\xi) = \sum_{n=-\infty}^{\infty} \hat{g}(\xi + n).$$

Thus, $f = g$ if and only if $\hat{f} = \hat{g}$ if and only if $\text{resum}(\hat{f}) = \text{resum}(\hat{g})$. Now we invoke the result shown in the first problem again. Since $\text{resum}(\hat{f}) = \text{F.T.}(\text{sample}(f))$ and likewise for g ,

$$\text{resum}(\hat{f}) = \text{resum}(\hat{g}) \iff \text{F.T.}(\text{sample}(f)) = \text{F.T.}(\text{sample}(g)).$$

But we know this is true, as f and g are assumed to agree on all integer values! The claim therefore follows. \square

Definition

Let S be a set. Assume that for every $s \in S$ we have a vector space V_s over \mathbb{R} (or \mathbb{C}). Define $\bigoplus_{s \in S} V_s$, the **direct sum** of the vector spaces V_s , to be the set of functions $f : S \rightarrow \bigcup_{s \in S} V_s$ such that $f(s) \in V_s$ for all $s \in S$ and $f(s) = 0$ for all but finitely many $s \in S$. For $f, g \in \bigoplus_{s \in S} V_s$, define $f + g$ by $(f + g)(s) = f(s) + g(s)$. For $c \in \mathbb{R}$, define cf by $(cf)(s) = c(f(s))$.

Problem 4

- (a) Prove that $\bigoplus_{s \in S} V_s$ is closed under addition and scalar multiplication as defined above.
- (b) When $S = \{s, t\}$ only has two elements, we get a vector space $V_s \oplus V_t$ from the two vector spaces V_s and V_t . Prove that $V_s \oplus V_t$ is isomorphic to the vector space of ordered pairs (v, w) where $v \in V_s, w \in V_t$, and the addition and scalar multiplication are given by $(v, w) + (v', w') = (v + v', w + w')$ and $c(v, w) = (cv, cw)$.
- (c) If S is any set, define the **free vector space** on S to be

$$F(S) := \bigoplus_{s \in S} \mathbb{R},$$

i.e., we take each vector space V_s to be \mathbb{R} . We have a function $i : S \rightarrow F(S)$ sending $s \in S$ to the function $i(s) : S \rightarrow V$ by

$$i(s)(s') = \begin{cases} 1 & \text{if } s' = s \\ 0 & \text{otherwise.} \end{cases}$$

Let V be any vector space and let $g : S \rightarrow V$ be any function. Prove that there exists a unique linear transformation $T : F(S) \rightarrow V$ such that $g = T \circ i$, i.e., such that the following diagram commutes:

$$\begin{array}{ccc} F(S) & \xrightarrow{T} & V \\ i \uparrow & \nearrow g & \\ S & & \end{array}$$

Proof of 4(a). Suppose f, g are in the direct sum. Then $f(s) \neq 0$ for at most finitely many $s \in S$ and the same holds for g . If $(f + g)(s) = f(s) + g(s) \neq 0$ then either $f(s) \neq 0$ or $g(s) \neq 0$ (or both), but this can only happen for finitely many $s \in S$. Therefore $f + g$ is also in the direct sum. That $cf \in \bigoplus_{s \in S} V_s$ is immediate given the linearity of f . \square

Proof of 4(b). Consider the map $T : V_s \oplus V_t \rightarrow V_s \times V_t$ by $T(f) = (f(s), f(t))$. Since f is well-defined, so is T . For injectivity, if $f \neq g$ then $f(x) \neq g(x)$ for some $x \in S$. Thus either $f(s) \neq g(s)$ or $f(t) \neq g(t)$. In either case $T(f) \neq T(g)$. Therefore T is injective.

Surjectivity is trivial, and linearity follows directly from that of f . \square

Proof of 4(c). We first show existence. For $f \in F(S)$, define $T(f) := \sum_{s \in S} f(s)g(s)$. T is linear because

$$\begin{aligned} T(f_1 + f_2) &= \sum_{s \in S} (f_1 + f_2)(s)g(s) \\ &= \sum_{s \in S} [f_1(s) + f_2(s)]g(s) \\ &= \sum_{s \in S} f_1(s)g(s) + \sum_{s \in S} f_2(s)g(s) = T(f_1) + T(f_2), \end{aligned}$$

and

$$T(cf) = \sum_{s \in S} (cf)(s)g(s) = \sum_{s \in S} cf(s)g(s) = c \sum_{s \in S} f(s)g(s) = cT(f).$$

The diagram commutes because, while g sends $s \in S$ to $g(s) \in V$,

$$(T \circ i)(s) = \sum_{s' \in S} [i(s)](s')g(s') = [i(s)](s)g(s) + \sum_{s' \neq s} 0 \cdot g(s') = g(s).$$

Now we show the uniqueness of T . Suppose for some other T' we have $T \circ i = g = T' \circ i$, that is,

$$T(i(s)) = g(s) = T'(i(s)) \text{ for all } s \in S.$$

Let $f \in F(S)$ be arbitrarily chosen. Recall that $f(s) \neq 0$ for at most finitely many $s \in S$. Let $\{s_i\}_{i=1}^n$ be the set of all elements of S on which f does not vanish. It follows that

$$f = \sum_{i=1}^n f(s_i)i(s_i).$$

Indeed, if f is defined as such, we get

$$f(s) = \sum_{i=1}^n f(s_i)[i(s_i)](s) = \begin{cases} f(s_k)[i(s_k)](s_k) = f(s_k) & \text{if } s = s_k \in \{s_i\}_{i=1}^n \\ \sum_{i=1}^n f(s_i)[i(s_i)](s) = \sum_{i=1}^n f(s_i) \cdot 0 = 0 & \text{otherwise.} \end{cases}$$

This summation recovers f precisely! Then, by linearity,

$$\begin{aligned} T(f) &= T\left(\sum_{i=1}^n f(s_i)i(s_i)\right) = \sum_{i=1}^n f(s_i)T(i(s_i)) \\ &= \sum_{i=1}^n f(s_i)g(s_i) = \sum_{i=1}^n f(s_i)T'(i(s_i)) \\ &= T'\left(\sum_{i=1}^n f(s_i)i(s_i)\right) = T'(f), \end{aligned}$$

and we are done. □