HOMEWORK, WEEK 11

This assignment is due Monday, April 5. Handwritten solutions are acceptable but La-
TeX solutions are preferred. You must write in full sentences (abbreviations and common
mathematical shorthand are fine).

(1) We've looked at Fourier series for periodic functions and Fourier transforms for non-
periodic functions; now we’ll look at how they’re related. As usual for our treatment
of Fourier transforms, we’ll work at a heuristic level.

First we consider two important operations one can perform on suitably nice func-
tions f: R — C:

Definition. If f : R — C is a suitably nice function, define the periodic resummation
resum(f) of f by

resum(f)(z) := Z flx+n),

n=—oo

a periodic function from R to C with period 1.

As on a previous homework set, we can view resum(f) as a function on the unit
circle S'; equivalently, we can view resum(f) as a function on R/Z, the set of equiv-
alence classes of real numbers under the equivalence relation ry ~ ry if 71 — 1ry € Z.

Definition. If f : R — C is a suitably nice function, define the sample sequence
sample(f) by

sample(f)(n) := f(n),
a function from Z to C (this is just the restriction of f to Z C R).

For X € {R,Z,R/Z}, write Fun(X) for the vector space of suitably nice C-valued
functions on X. We have a diagram of linear transformations

Fun(R) <—2> Fun(R) ;

resum l j sample

Fun(R/Z) = Fun(Z)

where “F.T.” means Fourier transform. The arrow pointing to the right on the bottom
edge sends f € Fun(R/Z) to its sequence of Fourier coefficients. The arrow pointing
to the left on the bottom edge sends (a,)0>_ € Fun(Z) to (F.T.((an)p>_) €
Fun(R/Z) where

(BT ((an)ioo)) (@) = Y ane™>™™,

n=—oo
which is the Fourier series built from the coefficients (a,,) but evaluated at —z

rather than at z.

o0
n=—oo?
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Remark. This last instance of the “Fourier transform” is typically called the discrete-
time Fourier transform or DTFT. With this language, (a,,)22__ is typically thought
of as being sample(f) where f is some continuous-time signal (e.g. air pressure in
a given direction at a given point, when doing acoustics). If you wanted to take
the Fourier transform F.T.(f) = f of f but only had access to the sample values
sample(f), you could take the DTFT of sample(f) and hope you can recover the

information want about f.

Problem. Show heuristically that the above diagram commutes when the “F.T.”
arrows point to the right, i.e. for f € Fun(R), we have

sample(F.T.(f)) = F.T.(resum(f)).

Similarly, show heuristically that the diagram commutes when the “F.T.” arrows
point to the left, i.e. for f € Fun(R), we have

resum(F.T.(f)) = F.T.(sample(f)).

Hint: For the first statement, write out the definition of F.T.(resum(f)); note that
this instance of F.T. is extracting Fourier coefficients of a periodic function, so it
should involve an integral fol rather than ffooo Integrating by substitution, try to

write the result as a sum of integrals fy?“ that you can assemble into an integral

" For the second statement, it’s easiest to proceed formally: show that when applying
F.T. to both sides, you get the same result using the first statement. It’s useful that
doing F.T. twice can be written as f +— refl(f), where (refl(f))(x) = f(—x) in all
cases.

Remark. It follows that if we take the DTFT of sample(f) for some f € Fun(R),
the result is the same as applying periodic resummation to the Fourier transform
FT.(f) = f . If f represents some continuous-time signal and we would like to
recover f from the sample sequence sample(f), we might hope that we are in a case
where the periodic resummation operation applied to f “loses no data.” Then we
should be able to use resum(f) to deduce f itself.

Remark. Recall that the Fourier transform comes from the Pontryagin self-duality
of R: we have R =~ R. Similarly, Fourier series come from the Pontryagin duality
7 = R/Z. These instances of duality are related: Z is a subgroup of R and R/Z
is a quotient of R. In general, let G be a locally compact topological abelian group
and let H be a closed subgroup of G. We have isomorphisms H = G/ ann(H) and

G / H = ann(H), where ann(H) is the “annihilator of H” (this makes sense if G is
defined to be the group of characters, i.e. homomorphisms from G into S'). For

G =Rand H =7 C R, an element (z — ¢2™?) of R 2 R annihilates H = Z if and
only if £ is an integer.
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There are maps sample : Fun(G) — Fun(H) (just restriction of functions to H)
and resum : Fun(G) — Fun(G/H). With appropriate choices of measure on all the
groups in question, the squares

A

Fun(G) <1 Fun(G)

resum j L sample

Fun(G/H) < Fun(ann(H))

commute, where the F.T. arrows point either to the right or to the left.

Remark. Fourier transforms require integrals (typically Lebesgue), which require
measures. The key result is that for locally compact Hausdorff topological groups,
there exists a unique translation-invariant measure up to rescaling, called Haar mea-
sure. We are always using Haar measure on all groups in sight; the only issue is fixing
the scaling factors. It’s not hard to see that scaling the Haar measure on G relative
to that on GG will introduce a scaling factor in the Fourier inversion formula; given
a choice of Haar measure on G, there exists a unique choice of Haar measure on G
such that the Fourier inversion formula has no scaling factor.

In our case, Haar measure on R is Lebesgue measure up to scaling; we take the
standard Lebesgue measure. However, we need to be careful when identifying R
(with its Haar measure defined so that the Fourier transform has no scaling factor)
with (R, usual Lebesgue measure). The measure-preserving identification here sends
€ € R to(z+— ™) in R. This is the reason I use e 2% rather than e®* in
the Fourier transform, and why I don’t have a factor of % in the Fourier inversion
formula.

(2) Using the result of the previous problem, heuristically deduce the Poisson summation
formula: for suitably nice f € Fun(R), we have

Y f)y= ) f).

n=—oo n=—oo

Hint: This is a bit of magic. The DTFT gives you sums from —oo to oo, so when
you see a sum from —oo to 0o, you can try thinking of it as coming from a DTFT. On
the left side of the equation, we have a sum from —oo to oo involving f sampled at
integer points. If you applied the DTFT to the sequence (f(n))s _ ., the definition
would give you the function

§'_> f: f(n)e_2m”£,

n=—oo

and now you can notice that the left side of the Poisson summation formula is the
evaluation of this function at £ = 0. From here, the commutative squares should give
you what you need.



(3)
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Another consequence of the above commutative squares is the Shannon—Nyquist sam-
pling theorem, which is a fundamental result in signal processing whose applica-
tions you're already very familiar with if you listen to music electronically. Suppose
f € Fun(R) represents air pressure over time; you can only sample f(t) at discrete
sample points ¢, but you'd like enough data to recover f uniquely (so you can play
it back accurately). For an arbitrary function f, this is (of course) impossible, but it
turns out to be possible given a suitable assumption on the Fourier transform f of
f. Specifically, you want f to be compactly supported (i.e. zero outside a compact
interval of R); if this holds, the original function f is called “band-limited.”

Problem. Let f,g € Fun(R) and suppose that f(&) = §(€) = 0 unless € € (0,1) (ie.
f and g are supported on the interior of the compact interval [0, 1]). Assuming that
f(n) = g(n) for all integers n, show heuristically that f = g.

Hint: Tt suffices to show that f = §; show it suffices to show that resum(f) =
resum(g) given the assumptions, and use a commutative square from above.

Remark. The above problem was set up to avoid extra constants that complicate the
computations, but realistically one samples f € Fun(R) on some subgroup 77 C R
(for some T > 0 that might not be T'=1). A character £ — €™ on R annihilates

TZ if and only if € € (1/T)Z, so to make the above squares work, the bottom-left

_R__
a/TZ"

and we have f(tn) = g(tn) for all n € Z, then f = g everywhere.

corner should be Thus, if f and ¢ are supported on the interior of [0,1/T],

Furthermore, it is not so realistic to ask that f and ¢ have no negative Fourier
coefficients, although it is often realistic to ask that the Fourier coefficients are
bounded above in absolute value (values of f(€) at large |€| correspond acousti-
cally to very high-pitch components of the sound, which can be thrown away if they
are above the range of human hearing). If f and g are supported on the interior
of [=1/(2T),1/(2T)], it still follows that resum(f) and resum(§) determine f and g,
so the argument goes through. Thus, the usual statement of the theorem is that a
sample interval of 1/(2B) (seconds in between samples) is sufficient assuming f is

band-limited to [—B, B (B measured in hertz, i.e. cycles per second; we are setting
B=1/(2T)so T =1/(2B)).

One often works in terms of the sample rate f; = 2B, the number of samples per
second, instead of the sample interval 1/f; = 1/(2B). For a sample rate of f; to be
sufficient, f should be supported on [—fs/2, fs/2]. Audio signals are often sampled
at fs = 44100 hertz; an assumption that f is band-limited to [—22050, 22050] is
workable because the range of human hearing is about 20 hertz to 20000 hertz.

Now we’ll begin studying tensors. Besides being crucial for differential forms, tensors
are important in many areas of math, science, and even machine learning. The
perspective I want to take is that of “operations on vector spaces,” especially the
tensor product of vector spaces. We know about operations in vector spaces; we can
add two vectors and get another vector. It turns out that we can also add two vector
spaces and get another vector space (the direct sum), such that the dimensions add.
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The tensor product will be a way of multiplying two vector spaces to get another
vector space, such that the dimensions multiply.

Definition. Let S be any set. Assume that for every s € S, we have a vector space
Vs over R (it would be just as easy to work over C). Define

Pv.,

seSs

the direct sum of the vector spaces V, to be the set of functions f : S — UgegViy
such that f(s) € V; for all s € S, and such that f(s) = 0 for all but finitely many
s € S. (Note that the union is a “disjoint union,” i.e. the vector spaces Vy are not
given as subsets of a larger set a priori.)

For f,g € @scsVs, define f + g by (f 4+ g)(s) = f(s) + g(s). For c € R, define cf
by (cf)(s) = c(f(s))-

Remark. You can think of @,c5V, as the vector space of all formal linear combina-
tions c;v; + - - - + ¢, v, where for 1 < ¢ < n, we have v; € V;, for some s1 # - -+ # sp,.
The linear combinations are finite sums because we require f(s) = 0 for all but finitely
many s € S. If we did not impose this condition, we would have the direct product
[T;e5Vs, which cannot always be viewed in terms of finite linear combinations.

(a) Prove that ©scsVs is closed under the above addition and scalar multiplication
operations.

Hint: This is very short- you just need to check the “vanishes at all but finitely
many s’ property for sums and scalar multiples.

One could also check the vector space axioms for @45V, and I recommend doing
this in your head, but it would be tedious to write out and it’s not required.

(b) In particular, when S has two elements S = {s,t}, we get a vector space V, &V,
from two given vector spaces Vi and V;. Prove that V; @&V, is isomorphic to the
vector space of ordered pairs (v, w) where v € V5, w € V; (i.e. the Cartesian
product V; x V;), and the addition and scalar multiplication are given by (v, w)+
(W, w') = (v+ v, w+w) and c¢(v,w) = (cv, cw).

Hint: You can define a linear map sending a function f € V, @ V; as defined
above to the ordered pair (f(s), f(t)). Check that this map is linear and bijective.
Again, this proof should be short.

Remark. From a basis {e,} for Vi and a basis fz for V;, one gets elements
(eq,0) and (0, fz) of V5 @& V. One can check that these elements form a basis
for V; @ V;. In particular, if V' and W are vector spaces of dimension n and m
respectively, then V' & W has dimension n + m. Soon we will define a vector
space V ® W, the tensor product of V and W, whose dimension is nm.

(c) If S is any set, define the free vector space on S to be

F(S) = PR,

seS
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i.e. we take each vector space Vi to be R. We have a function i : S — F(S)
sending s € S to the function i(s) : S — V defined by

i()(s') = {1 if s =s

0 otherwise.

Remark. You can think of F(S) as the vector space of formal linear combina-
tions of elements of S; the elements of S form a basis for F'(S) by definition.
Equivalently, F'(S) is a way to construct a vector space having a given set S as
a basis.

Problem. Let V be any vector space and let ¢ : S — V be any function.
Prove that there exists a unique linear transformation 7" : F'(S) — V such that
g =T o1, ie. such that the following diagram commutes:

F(S) L=V

‘ 9
S

Hint: For f € F(S), define T'(f) to be the element of V' given by > _o f(s)g(s)
(note that f(s) is a real number and g¢(s) is a vector in V). The sum is finite

since f(s) = 0 for all but finitely many s. Check (briefly) that 7" is linear and
that the diagram commutes.

For uniqueness, if T and 7" are two linear maps that the diagram commutes,
you want to show that for each f € F(S) we have T(f) = T'(f). To do this,
write f as a linear combination of elements i(s) € F'(S) for finitely many s € S
(this is possible since f(s) = 0 for all but finitely many s). Deduce uniqueness
from the (assumed) fact that T'(i(s)) = g(s) = T"(i(s)) for all s.

Remark. As mentioned above, F(S) can be thought of as the vector space
of formal linear combinations of elements of S. This problem shows that any
function g from a set S to a vector space V can be “extended linearly,” in a
unique way, to a linear transformation defined on the vector space of formal
linear combinations of elements of S.



