
HOMEWORK, WEEK 12

This assignment is due Monday, April 12. Handwritten solutions are acceptable but
LaTeX solutions are preferred. You must write in full sentences (abbreviations and common
mathematical shorthand are fine).

(1) This problem set will define the tensor product V ⊗W of two vector spaces V and
W ; we need some preliminary constructions first.

Let V be a vector space and let W be a subspace of V . Define an equivalence
relation on V by stating that v1 ∼ v2 if v1 − v2 ∈ W . Let V/W (or V

W
) denote the

set of equivalence classes under this relation. If v ∈ V , let [v] denote its equivalence
class.

For two elements α, β of V/W , define α + β to be [v1 + v2] where α = [v1] and
β = [v2]. Also, for c ∈ R, define cα to be [cv] where α = [v].

Problem. Prove that α + β and cα are well-defined (i.e. independent of the choice
of v1 and v2 representing α and β).

Hint: For addition, you want to show (why?) that if v1, v2 and v′1, v
′
2 are such that

v1 − v′1 ∈ W and v2 − v′2 ∈ W , then (v1 + v2)− (v′1 + v′2) is also in W . Use that W is
a subspace of V ; scalar multiplication is similar.

Remark. One could check the vector space axioms for V/W to see that V/W is a
vector space under the above addition and scalar multiplication. The space V/W is
called a quotient vector space. If V has dimension n and W has dimension m, then
V/W has dimension n−m.

(2) Given the setup of the previous problem, let Z be another vector space and let
f : V → Z be a linear map such that f(w) = 0 for all w ∈ W . Let p : V → V/W
denote the linear map sending v to [v]. Prove that there exists a unique linear map
g : V/W → Z such that f = g ◦ p, i.e. that the following diagram commutes:

V
f

""
p

��
V/W g

// Z

Hint: For existence, define g([v]) = f(v); you want to show that g is well-defined
and linear (it follows immediately that the diagram commutes). If v − v′ ∈ W , use
the fact that f(v− v′) = 0 by assumption. For linearity, use that [v] + [v′] := [v+ v′]
as defined above; show that g sends such a sum to g([v]) + g([v′]) (and similarly for
scalar multiples).

For uniqueness, note that any α ∈ V/W is equal to [v] = p(v) for some v ∈ V .
Show that if g, g̃ are two maps making the diagram commute, then g(α) = g̃(α) for
all α ∈ V/W .
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(3) Let V and W be vector spaces over R; consider the free vector space F (V ×W ) on
the Cartesian product V ×W of V and W . Given an element (v, w) of V ×W , we
view (v, w) as an element of F (V ×W ) via the inclusion map i : V ×W → F (V ×W ).
Any element of F (V ×W ) is a finite linear combination of such elements (v, w).

Warning. F (V ×W ) disregards the vector space structures on V and W , and just
treats V ×W as the set of ordered pairs (v, w) where v ∈ V and w ∈ W . For example,
if v 6= 0 in V , then (v, 0) and (2v, 0) are linearly independent in F (V ×W ), even
though v and 2v are not linearly independent in V .

Let S be the subset of F (V ×W ) consisting of the following elements:
• (v, w) + (v′, w)− (v + v′, w) for all v, v′ ∈ V and w ∈ W
• (v, w) + (v, w′)− (v, w + w′) for all v ∈ V and w,w′ ∈ W
• c(v, w)− (cv, w) for all v ∈ V , w ∈ W , and c ∈ R
• c(v, w)− (v, cw) for all v ∈ V , w ∈ W , and c ∈ R.

Definition. Define

V ⊗W :=
F (V ×W )

span(S)
.

Given an element (v, w) of F (V ×W ), its class [(v, w)] in the quotient space V ⊗W
will be denoted by v ⊗ w.

Warning. In general, not every element of V ⊗W can be written as v⊗w for some
v ∈ V and w ∈ W . Elements like v ⊗ w are called “pure tensors.” In general, an
element of V ⊗W is a linear combination of pure tensors, but it might not be a pure
tensor itself. In quantum mechanics, impure tensors correspond to entangled states.

Recall that if V,W,Z are vector spaces over R, a map f : V ×W → Z is said to
be bilinear if:
• f(v + cv′, w) = f(v, w) + cf(v′, w) for all v, v′ ∈ V , w ∈ W , and c ∈ R
• f(v, w + cw′) = f(v, w) + cf(v, w′) for all v ∈ V , w,w′ ∈ W , and c ∈ R.

Problem. Show that the map π : V × W → V ⊗ W sending (v, w) to v ⊗ w is
bilinear.

Hint: To see that π(v + cv′, w) = π(v, w) + cπ(v′, w), show that (v + cv′, w) −
(v, w)− c(v′, w) is in the span of the set S. The other equation is similar (you don’t
need to write out the proof again).

(4) In this problem you will prove the “universal property” of tensor products: roughly
speaking, a bilinear map from V ×W to Z is the same as a linear map from V ⊗W
to Z.

Problem. Let V,W , and Z be vector spaces over R and let f : V ×W → Z be a
bilinear map. Show that there exists a unique linear map g : V ⊗W → Z such that
f = g ◦ π, i.e. such that the following diagram commutes:

V ×W
π
��

f

##
V ⊗W g

// Z
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Hint: For existence, use the previous homework to upgrade the (set-theoretic) map
f : V ×W → Z into a linear map from F (V ×W ) to Z. Show that this linear map
vanishes on elements of S, so that it descends to a linear map from V ⊗W to Z.

For uniqueness, show that if g and g̃ are two linear maps satisfying the above
conditions, then g and g̃ agree when applied to any pure tensor v ⊗ w. Indeed,
we have v ⊗ w = [(v, w)], so g(v ⊗ w) = g(π(v, w)) = f(v, w), and similarly for g̃.
Conclude (using that any tensor is a linear combination of pure tensors) that g = g̃.

Remark. It’s a good exercise to show, using this universal property, that we have
V ⊗W ∼= W ⊗V for any vector spaces V and W (as well as other standard properties
like (V ⊗W )⊗Z ∼= V ⊗(W⊗Z)). One can also deduce relations like V ⊗(W1⊕W2) ∼=
(V ⊗ W1) ⊕ (V ⊗ W2), i.e. “tensor products distribute over direct sums” (up to
isomorphism). The vector space R = R1 acts as a “unit” for the tensor product
operation; for any V , we have V ⊗ R1 ∼= V . (You don’t need to prove any of these
properties on the homework, but they are good exercises.)

It follows that if V has dimension n, so V ∼= Rn ∼= R⊕ · · · ⊕ R (n times), and W
has dimension m, then V ⊗W ∼= (R⊕ · · · ⊕ R)⊗ (R⊕ · · · ⊕ R), which expands out
as a direct sum of nm copies of R. Thus, V ⊗W has dimension nm. Concretely, if
{ei} forms a basis for V and {fj} forms a basis for W , then {ei ⊗ fj} forms a basis
for V ⊗W .

Remark. Mathematicians often define a vector to be an element of a vector space.
Correspondingly, one can define a tensor of rank k to be an element of a vector
space of the form V1 ⊗ · · · ⊗ Vk for some k ≥ 1 (i.e. a tensor is a “vector in the
space‘V1 ⊗ · · · ⊗ Vk”). In quantum mechanics, if we have k isolated systems that
don’t communicate with each other and each has Vi as its (complex) Hilbert space of
states (for 1 ≤ i ≤ k), then the Hilbert space for the composite system is V1⊗· · ·⊗Vk.
One may be able to prepare this system in an “entangled state,” i.e. a state that
can’t be written as a single pure tensor v1 ⊗ · · · ⊗ vk (it must be a nontrivial sum
of pure tensors); for example, you could start by allowing the k different physical
systems to interact and then separate them later.

A useful example to keep in mind is in quantum computing, where k is the “number
of qubits” and each Vi is the two-dimensional vector space C2 (with its standard inner
product). Following Dirac’s “bra-ket” notation, one often labels the two basis vectors
of C2 as |0〉 and |1〉 (think of these as the quantum analogues of the two possible
values “zero” and “one” of a classical bit). Then, for example, C2 ⊗ C2 has basis

{|0〉 ⊗ |0〉 , |1〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |1〉},

which is often written in shorthand as

|00〉 , |10〉 , |01〉 , |11〉 .

The state
1√
2
|10〉+

1√
2
|01〉

of this 2-qubit system is an entangled state; it cannot be written as a pure tensor. If
we simultaneously measure the values of the first and second qubits (even after they
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have been separated by an arbitrary distance), we will get either (1, 0) or (0, 1), not
(0, 0) or (1, 1).

Remark. In some contexts (see e.g. https://www.tensorflow.org/guide/tensor),
it is common to present tensors as being “higher-dimensional analogues of vectors
and matrices.” If a vector is a one-dimensional array of numbers and a matrix is
a two-dimensional array, a tensor of rank k should be a k-dimensional array. One
can connect this view on tensors with our definitions above as follows: given bases
{ei,j}j for each Vi, one gets a basis for V1⊗· · ·⊗Vk by taking tensor products of basis
vectors as discussed above. An arbitrary element of V1 ⊗ · · · ⊗ Vk can be expanded
as a linear combination of basis vectors; one has a unique coefficient cj1,...,jk on each
basis vector e1,j1 ⊗ · · · ⊗ ek,jk . One organizes these coefficients into an array of the
appropriate dimensionality:
• For k = 1, the coefficients cj form a one-dimensional array (vector),
• For k = 2, the coefficients cj1,j2 form a two-dimensional array (matrix),
• For k = 3, the coefficients cj1,j2,j3 form a three-dimensional array (rank-3 tensor),

etc.
Once we introduce dual vector spaces on next week’s HW, we will often prefer to view
a matrix as representing a linear transformation between vector spaces T : V → W ,
and then interpret this transformation as an element of W ⊗V ∗ (still a rank-2 tensor,
but involving a dual on one of the factors). See also the next remark.

Remark. The above definitions make no distinction between “covariant,” “con-
travariant,” and “mixed” tensors. This extra distinction is natural when we have
fixed vector spaces V1, . . . , Vk and we consider tensor products of the Vi and/or their
dual spaces V ∗i . In this setting, an element x of V1 ⊗ · · · ⊗ Vk is called a “covariant
tensor” and we write its coefficient on a basis vector e1,j1 ⊗ · · · ⊗ ek,jk as xj1,...,jk (i.e.
we use “up indices”). We also have “contravariant tensors” which are elements x of
V ∗1 ⊗ · · · ⊗ V ∗k ; we write its coefficient on the dual basis vector e1,j1 ⊗ · · · ⊗ ek,jk as
xj1,...,jk (i.e. we use “down indices”). In between these extreme cases, we have various
types of mixed tensors whose coefficients have both up and down indices.

This up/down convention is part of “Einstein notation,” developed by Albert Ein-
stein for use in relativity (this notation is widespread in physics, and it’s good for
mathematicians to be familiar with too). Another part of the convention is to write
only the coefficients and not the basis vectors they’re multiplied by when specifying
a tensor. For example:
• A vector x =

∑
i x

iei in V gets written as xi,
• A dual vector x =

∑
i xie

i ∈ V ∗ gets written as xi,
• A rank-2 covariant tensor

∑
i,j x

i,jei ⊗ fj in V ⊗W gets written as xi,j (where

{fj} is the given basis for W ),
• A rank-2 mixed tensor

∑
i,j x

i
jei ⊗ f j in W ⊗ V ∗ gets written as xij,

• A rank-2 contravariant tensor
∑

i,j xi,je
i ⊗ f j in V ∗ ⊗W ∗ gets written as xi,j.

Often one will consider certain sums of these coefficients; the convention is that one
sums over repeated indices (one must be up and the other down), and omits the sum
symbol. For example, let aij represent an element of W ⊗ V ∗ (corresponding to a

linear transformation T from V to W ; in fact, in the assumed bases, aij is the usual

matrix entry of T in row i and column j). Mathematically, we would write aij as

https://www.tensorflow.org/guide/tensor
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i,j a

i
jei ⊗ f j. Let vi represent a vector in V ; mathematically, we would write vi as∑

i v
iei. Applying the transformation aij to the vector vi gives∑

i,j

aijv
jfi

(a vector in W ), and the convention is to write this vector as simply

aijv
j

(the sum over j is implicit, as is the sum over i with the “invisible” basis vectors fi).
You know this quantity represents a vector since it has one “free” index i and this
index is up.

Remark. The meaning of “covariant” and “contravariant” above is based on how
the coefficients of the tensors transform under changes of basis on the underlying
vector spaces. For notational simplicity, assume the Vi are all the same vector space
V , with basis {ei}, and suppose we are changing to a new basis {e′i}. We can write
e′j =

∑
i a

i
je
′
i where the coefficients aij form an invertible matrix. Correspondingly, if

x =
∑
i1,...,ik

xi1,...,ikei1 ⊗ eik ,

then we equivalently have

x =
∑

j1,...,jk,i1,...,ik

xj1,...,jkai1j1 · · · a
ik
jk
e′j1 ⊗ e

′
jk
.

In Einstein notation, xi1,...,ik is transformed to xj1,...,jkai1j1 · · · a
ik
jk

. If you have some
coefficients x(i1, . . . , ik) and they transform this way under changes of basis, then they
should be written with “up indices” like xi1,...,ik . Similarly, write e′i =

∑
j(a
−1)jie

′
j; if

x(i1, . . . , ik) transforms to

x(j1, . . . , jk)(a
−1)j1i1 · · · (a

−1)jkik ,

then x can be viewed as a contravariant tensor of rank k and one writes xi1,...,ik in
Einstein notation.

Remark. A typical situation is where each Vi is Rn for some (fixed) n, equipped with
some basis (more generally, each Vi is (TM)p for some smooth manifold M and some
p). In both mathematics and physics, one often considers “tensor–valued functions”
or “tensor fields,” i.e. maps from some U ⊂ Rn into Rn⊗· · ·⊗Rn (more generally, one
considers sections of tensor products of the tangent bundle of M). Such a function f
can be thought of as an indexed collection of real-valued functions f j1,...,jk (this is still
true locally in the general setting of manifolds and vector bundles). If we allow (Rn)∗

(or the cotangent bundle T ∗M) in our tensor products, then the functions f may
have both upper and lower indices. For example, differential forms can be viewed
as certain sections of tensor powers of the cotangent bundle T ∗M (so their indices
are down in Einstein notation). In this context, the transformation rules for tensors
are often viewed in terms of changes of basis coming from coordinate changes on
the manifold M . When dealing specifically with tensor fields on spacetime, Einstein
notation uses the additional convention that Roman indices are “spacial indices”
(i, j ∈ {1, 2, 3}) while Greek indices are “spacetime indices” (µ, ν ∈ {0, 1, 2, 3}).


