
HOMEWORK, WEEK 13

This assignment is due Monday, April 19. Handwritten solutions are acceptable but
LaTeX solutions are preferred. You must write in full sentences (abbreviations and common
mathematical shorthand are fine).

(1) Along with tensor products, another essential operation on vector spaces is the notion
of the dual space.

Definition. If V is a vector space over R, its dual space V ∗ is defined to be the
vector space of linear transformations from V to R (linear transformations into R are
often called linear functionals).

If {ei} is a basis for V , define e∗i ∈ V ∗ by e∗i (ej) = δi,j (following the up/down
index conventions mentioned in the previous homework, one often writes ei instead
of e∗i ).

Problem. Show that if V is finite-dimensional with basis {ei}, then the linear func-
tionals {e∗i } form a basis for V ∗; in particular, V ∗ has the same dimension as V . Also
show (using ideas from last week’s homework) that if V and W are finite-dimensional
with bases {ei} and {fj}, then the elements ei ⊗ fj form a basis for V ⊗W ; in par-
ticular, the dimension of V ⊗W is the product of dimensions of V and W .

Hint: For V ∗, to show linear independence, suppose some linear combination of the
e∗i is zero. By evaluating this linear combination at each basis vector ei, you should
be able to deduce that each coefficient is zero. To show these linear functionals span
V ∗, let φ : V → R be an arbitrary linear functional. Show that φ =

∑
i φ(ei)e

∗
i by

evaluating each side on an arbitrary basis vector ej.

For the tensor product, I find it easiest to think abstractly. Write V as R⊕· · ·⊕R
where there are dim(V ) copies (one for each basis vector); this is just the usual
identification of V with Rdim(V ) that a basis gives you. Express W similarly. Now,
for general vector spaces V1, V2, V3, construct isomorphisms between V1 ⊗ (V2 ⊕ V3)
and (V1⊗V2)⊕ (V1⊗V3) (i.e. show that tensor product distributes over direct sum).
This sort of thing is easiest to prove using universal properties: to define a linear
map out of V1⊗ (V2⊕ V3), define a bilinear map out of V1× (V2⊕ V3), etc. Once you
have this, you can expand out V ⊗W as R⊕· · ·⊕R where there are dim(V ) dim(W )
copies and show that under this identification, the standard basis of Rdim(V ) dim(W ) is
identified with the set {ei ⊗ fj} ⊂ V ⊗W .

(2) Now we study how tensor products interact with dual spaces. If V and W are
vector spaces over R, there is a map T : V ∗ ×W ∗ → (V ⊗W )∗ sending (φ, ψ) to
(v ⊗ w) 7→ φ(v)ψ(w). Prove that this map is well-defined and bilinear (and thus
induces a linear map V ∗ ⊗W ∗ → (V ⊗W )∗). If V and W are finite-dimensional,
prove that this induced map is an isomorphism.

Hint: For well-definedness, check that given φ and ψ, the map from V × W to
R given by (v, w) 7→ φ(v)ψ(w) is bilinear. For bilinearity of T , check that T (φ1 +
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cφ2, ψ) = T (φ1, ψ) + cT (φ2, ψ). You can do this by showing that both sides agree
when applied to an element v ⊗ w of V ⊗W . This shows linearity in the first slot;
linearity in the second slot is similar.

Now, when V and W are finite-dimensional, let {ei} be a basis for V and let {fj}
be a basis for W . Then {e∗i ⊗ f ∗j } is a basis for V ∗ ⊗W ∗ and {(ei ⊗ fj)∗} is a basis
for (V ⊗W )∗. Prove that the map induced by T sends the first basis bijectively to
the second basis.

Remark. The left side (V ⊗W )∗ of the above isomorphism can be identified with
the space of bilinear maps from V ×W to R. This problem shows that this space of
bilinear maps can also be described as V ∗⊗W ∗, when V and W are finite-dimensional.
More generally, if all spaces Vi are finite-dimensional we can identify V ∗1 ⊗· · ·V ∗n with
the space of multilinear maps from V1 × · · · × Vn into R.

Even more generally, if all spaces Vi and Wj are finite-dimensional, we can identify
V ∗1 ⊗· · ·⊗V ∗n ⊗W1⊗· · ·Wm with the space of multilinear maps from V1×· · ·×Vn to
W1⊗· · ·⊗Wn. A special case is when n = m = 1; we can identify V ∗⊗W (or W⊗V ∗)
with the space of linear maps from V to W . This identification is compatible with
the identifications (linear transformations↔ matrices, given bases) and (matrices↔
certain tensors, given bases), as mentioned in last week’s homework.

(3) At this point, we can define differential k-forms:

Definition. We let Altk(Rn,R) be the vector space of multilinear maps α : Rn ×
· · ·Rn → R with

α(v1, . . . , vi+1, vi, . . . , vn) = −α(v1, . . . , vi, vi+1, . . . , vn)

for 1 ≤ i < n. A differential k-form on U ⊂ Rn is a function

α : U → Altk(Rn,R).

Cr regularity for α can be defined by looking at its coordinates in any basis for the
finite-dimensional vector space Altk(Rn,R), and this is independent of the choice of
basis.

By the above problems, Altk(Rn,R) can be viewed as a subspace of (Rn)∗ ⊗
· · · (Rn)∗, so a differential k-form is a particular type of rank-k contravariant ten-
sor field on U (namely one that satisfies the “alternating property” at each point).
While this perspective is not strictly speaking necessary to define differential k-forms,
it will prove very useful when defining wedge products.

We will focus first on 1-forms, which are a bit simpler because they don’t require
the tensor product.

Example. Let U ⊂ Rn be open. A differential 1-form on U is a function α : U →
(Rn)∗. Given any basis {φ1, . . . , φn} for (Rn)∗, we can write α(p) = a1(p)φ1 + · · · +
an(p)φn where a1, . . . , an are functions from U to R. We say that α is of class Cr

(1 ≤ r ≤ ∞) if all the functions ai are of class Cr; since changes of basis on Rn are C∞

(even linear) functions, this notion is independent of the choice of basis {φ1, . . . , φn}.

We are already familiar with differential 0-forms:
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Example. Let U ⊂ Rn be open. A differential 0-form on U is a function f : U → R.

There are four fundamental operations on differential forms that we need to un-
derstand:
• Exterior derivative: if α is a k-form (say C∞), then we have a k + 1-form dα

(this operation will generalize the gradient, curl, and divergence operations).
• Wedge product: if α is a k-form and β is an l-form, then we have a k + l-form
α ∧ β (this operation will generalize the cross product of vectors in R3).
• Pullback: if α is a k-form on U and F : V → U is smooth where V ⊂ Rm is

open (for some m), then we have a k-form F ∗(α) on V .
• Integration: if α is an n-form on an n-dimensional cube [0, 1]n ⊂ Rn (it’s okay

that this isn’t an open set although α should at least be continuous in the right
sense), we have a real number∫

[0,1]n
α

(we can also integrate on more general rectangular sets than just [0, 1]n). Com-
bined with pullbacks, this operation will let us generalize line integrals and
surface integrals.

Before looking at k-forms for k > 1, we will study what we can for 0-forms and
1-forms. The wedge product of a zero-form f with any k-form is always defined as
ordinary scalar multiplication by the value of f at each point; the pullback of a zero-
form f by a function F is just defined to be f ◦ F , and integration of zero-forms on
R0 is just evaluation at the unique point 0 ∈ R0. As we will see below, any one-form
α on [a, b] is f(t)dt for some function f , and (e.g. assuming f is smooth or just

Riemann integrable) we can just define
∫
[a,b]

α :=
∫ b

a
f(t)dt as usual.

For the less trivial operations, we will start by studying the exterior derivative df
of a zero-form f (also known as the differential of f), closely related to the gradient
of f .

Definition. Let U ⊂ Rn be open and let f : U → R be a smooth function (0-form).
From f , define a differential 1-form df by the equation

df(p) = (Df)p

(in other words, df is just Df , which at a point p gives a linear map from Rn to R).

Problem. Let {e1, . . . , en} be the standard basis vectors of Rn and let {e∗1, . . . , e∗n}
be their dual basis vectors. Let f be as above; prove that

df =
∂f

∂x1
e∗1 + · · ·+ ∂f

∂xn
e∗n

(we use “up indices” xi rather than “down indices” xi to match the physics conven-
tions; a physicist may write df as ∂f

∂xi or even as ∂if , which is a 1-form since the i
index is down (“up indices in a denominator are down”)).

Hint: It suffices to show that df(p)(ei) = ∂f
∂xi (p) for each i and each p ∈ U . Use

the computation of (Df)p as a matrix from class, and multiply this matrix on the
right by the standard basis vector ei.
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Remark. Given a basis for Rn (in particular, the standard basis), one can identify
differential 1-forms on U with vector fields on U , i.e. functions from U to Rn (rather
than (Rn)∗). The vector field associated to the 1-form df is the gradient of f , denoted
∇f or grad(f):

∇f =
∂f

∂x1
e1 + · · ·+ ∂f

∂xn
en.

In general, df is a bit more natural of an object than ∇f ; it doesn’t require any
choice of basis to define.

Importantly, one can also identify 1-forms and vector fields by picking an inner
product for Rn, rather than a basis. On a general smooth manifold M , the 1-form
df for a function f : M → R is always defined, but the gradient ∇f requires a choice
of “Riemannian metric” on M (inner product on each tangent space). In Einstein
notation, one sometimes writes “∂if” for the gradient of f , as opposed to the 1-form
∂if . The Riemannian metric itself can be viewed as a function on M with values in
(Rn)∗ ⊗ (Rn)∗, since an inner product on Rn is (in particular) a bilinear map from
Rn × Rn to R (see below). Thus, as mentioned in last week’s homework, the metric
is determined (locally) by functions gij on M for 1 ≤ i, j ≤ dim(M). The gradient
of f is determined uniquely by the formula ∂if = gij∂

jf (note the implicit sum over

j); for the usual metric on Rn, gij = δij =

{
1 i = j

0 i 6= j
.

(4) Recall that for 1 ≤ i ≤ n, we have a coordinate projection function xi : U → R
(sending a point in U to its ith coordinate) and thus a 1-form dxi.

Problem. Prove that for all p ∈ U , we have dxi(p) = e∗i , where {ei} is the standard
basis of Rn.

Hint: You can use the previous problem; just compute the partial derivative of the
function xi with respect to each xj.

Remark. It follows that if f : U → R is a smooth function as above, then we can
write

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn,

a natural-looking formula.

(5) Now we will define pullbacks of 1-forms:

Definition. Let V ⊂ Rm be open and let α be a differential 1-form on V . Let
U ⊂ Rn be open and let F : U → V be a smooth function. The pullback F ∗(α) is
the differential 1-form on U defined at a point p ∈ U by

(F ∗(α))p(v) := αF (p)((DF )p(v))

for v ∈ Rn (note that (DF )p(v) ∈ Rm so it makes sense to evaluate αF (p) on the
vector (DF )p(v)).

The idea is that to pull back a differential 1-form by F , you push forward the
corresponding “input vector” v by DF ; the same idea is used to define pullbacks of
k-forms.
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Problem. Prove the following facts about pullbacks of 1-forms:
(a) If f : V → R is a smooth function and F : U → V is smooth, then

F ∗ (df) = d(f ◦ F )

(which equals d(F ∗(f)), so that pullbacks commute with exterior derivatives
acting on zero-forms).

(b) If α = f1α1 + · · ·+ fNαN , then

F ∗(α) = (f1 ◦ F )F ∗(α1) + · · ·+ (fN ◦ F )F ∗(αN)

(c) If α = f1dx
1 + · · ·+fmdx

m and ~r : [a, b]→ V is a smooth path with components
r1, . . . , rm, then

~r∗(α) = f1(~r(t))r
′
1(t)dt+ · · ·+ fm(~r(t))r′m(t)dt,

where we use t for the coordinate in [a, b].

Hint: For the first part, use that df := Df and apply the chain rule to show that
both sides act the same way on any vector v. For the second part, it also helps to
apply both sides to a vector v, so you can use the definition of pullback to phrase
things in terms of more familiar concepts. The third part should follow from the first
two parts.


