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Problem 1

Show that if V' is finite-dimensional with basis {e;}, then the linear functionals {e}} form a basis for V*,
where e (e;) = d; ;. In particular, V* has the same dimension as V. Also show that if V.1 are finite-
dimensional with bases {e;} and {f;} then the elements e; ® f; form a basis for V'@ W. In particular, the
dimension of V' @ W is the product of dim(V') and dim(W).

Proof. For convenience denote dim(V') = n, i.e., {e;} = {e;}1~;. To show the linear independence of {e} }, suppose
n

> cie; =0 (the zero functional). Evaluating this linear combination at e; we see
i=1

n n
Zcief(ej) = Zciéiﬁj =C; = 0
i=1 1=1

and so all coefficients ¢;’s must be 0. Thus {e;} is linearly independent. Now we show that it spans V*. Indeed,

for ¢ € V*, we have

_lewene:(ej) - o(e;)

for all e; € {e;}. Since ¢ is linear, p(v) = Y ¢(e;)e; (v) for all v e V. Indeed {e;} forms a basis for V*.
i=1

Per the hint, we first show that direct sum can be distributed over tensor products, i.e.,
Vie(VaeVs)z(Viel)e (Viels).
Per the hint, consider a linear transformation f: V) x (Va® V3) - (V1 @ Vo) @ (V1 ® V3) by
(v1, (v2,v3)) = (V1 ® V3,11 ®v3) for vy € Vi, vy € Vo, v3 € V3.

Indeed this is a bilinear mapping (we have shown in HW12 that the mapping (v, w) ~ v®w is bilinear). Therefore
by the universal property, there exists a linear g: V; @ (Vo @ V3) > (V1 ® V) @ (V1 ® V3).

Vix(VzoV3)

wl \
Vie(VaeVs) —— (VieVa) e (Vi ®Vs)

Therefore, if we identify V as R@---@R and W as R&---® R, applying the distributivity above tells us that we
~—— N~——
dim (V') times dim (W) times
can identify V@ W with (R@R)®---@(R®R). Since R® R = R, this can be further identified with the direct
——

dim (V') dim(W) times
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sum of dim(V') dim(W) copies of R. Naturally we have the standard basis for RE(V)dim(W) “and this can be

idenfitied with {e; ® f;} via the (composite) map e; ® f; ~ (e;, fj) = d; ;. This proves the claim. O
Problem 2

If V and W are vector spaces over R, there is a map T : V* x W* — (V @ W)* sending (p,%) to (the
functional) (v ® w) ~ @(v)yY(w). Prove that this map is well-defined and bilinear (and thus induces a
linear map V* @ W* - (V@ W*)). If V and W are finite-dimensional, prove that this induced map is an

isomorphism.

Proof. Since ¢ and ¢ are linear functionals, the mapping (v, w) ~ @(v)y¥(w) is bilinear. Therefore, once ¢, 1)
are given, the mapping (v ® w) — p(v)y¥(w) is uniquely determined. Hence T is well-defined.

Now we show the bilinearity of 7' (not of its output). Consider T (¢ +cpa2,1). The output is the linear functional
that maps (v@ w) to (1 +cps2)(v)(w). By definition this is equal to ¢1 (v)Y(w) + cpa(v)(w), which is equal
to T(p1,%) + T (p2,¢). Hence T is linear with respect to the first argument, and one can show analogously

that it is also linear w.r.t. the second. Bilinearity then follows.

Now we assume dim(V') = n < co and dim(W) = m < co. Let {e;}jL; and {f;}L, be their bases, respectively.
For convenience call this induced map J. To show that J defines an isomorphism, it suffices to check that J
restricted to {e] @ f} is a bijection to {(e; ® f;)*} (the rest of the claim, i.e., bijectivity between V* x W* and
(V@ W)*, follows by bilinearity and properties of basis). For injectivity, if e, €7, f7, f; satisfy

S(e; @ f})=5(& @ f;) = e (v)f; () =& (v) f; (w)

for all v@ w € V@ W, then fixing w tells us e; (v) = & (v) for all v, i.e., € = e} and likewise f; = f;. Hence S
is injective. For surjectivity, simply notice that the pre-image of the functional (v ® w) = é(v)f(w) is simply

(@ f) eV eW*. O
Problem 3

Let U c R™ be open and let f: U — R be a smooth function (0-form). From f, define a differential 1-form
df by df(p) = (Df)p. Let {e1,...,en} be the standard basis vectors of R™ and let {e7,...,e};} be their dual
basis vectors. Prove that

of . of
df = @el + ...+ @6

*
n:

Proof. By definition (Df), is given by
of of ]
[Lw - 2w
Notice that, for any e; (standard basis vector), since it would only keep 0f/0x" under multiplication, we have

A () (e = (D)ye) = 2

(p) forallpel.
Therefore, if = = z c;e;, we have
i=1

UG)) = OD(0) = 3 DNye) = 3 250
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so indeed
of . of .
df = @61 + ...+ O €hn-
O
Problem 4
Recall that for 1 <4 <n we have a coordinate projection function z* : U - R sending a point in U to its i‘"
coordinate and thus a 1-form dz’. Prove that for all p € U, we have dz’(p) = e}.
Proof. Using the previous part, dz’ = Oz el +...+ Oz ey = va el = el so da'(p) = e} for all p. O
Oxt ox" ox?
Problem 5
Prove the following facts about pulls of 1-forms:
(1) If f:V - Ris a smooth function and F : U - V is smooth then
F*(df) =d(fe F).
(2) Ha=fiag+..+ fyay then
F*(a) = (fio F)F*(a1) + ...+ (fn o F)F™ (an).
(3) Ifa=fide!'+.. + f,dz™ and r: [a,b] - V is a smooth path with component 71, ...,7,,, then
r*(a) = fi(r())ri@)dt + ... + fo (r())r), (¢)dt.
Proof. (1) Since df =Df, we have
F*(df)p(v) = F*(Df)p(v) = Dfp(p) (DFL(v))
=D(f e F)p(v) =d(f e F)(p)(v).
(2) Applying definition, we have
(F7())p(v) = ap @) (DF)p(v))
= (frar + ...+ fnan) rp) (DF)(v))
= (fra1) pp) (DF)p(0)) + ... + (fvan ) rp) (DF)p(v))
= (fre F)()F" (1) (v) + ... + (fw o F)(v) F™ () (v).
(3) Using (1) and (2),
(o) = r*(frdz' + ... + frodz™)
= fi(r(®)r* (dzt) + ... + frn (r(2))r* (dz™)
= fi(r@))ri@)dt + ...+ fr (r(2))r), ()dt. O



