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Problem 1

Show that if V is finite-dimensional with basis {ei}, then the linear functionals {e∗i } form a basis for V ∗,
where e∗i (ej) = δi,j . In particular, V ∗ has the same dimension as V . Also show that if V,W are finite-
dimensional with bases {ei} and {fi} then the elements ei ⊕ fj form a basis for V ⊕W . In particular, the
dimension of V ⊕W is the product of dim(V ) and dim(W ).

Proof. For convenience denote dim(V ) = n, i.e., {ei} = {ei}ni=1. To show the linear independence of {e∗i }, suppose
n

∑
i=1
cie
∗
i = 0 (the zero functional). Evaluating this linear combination at ej we see

n

∑
i=1
cie
∗
i (ej) =

n

∑
i=1
ciδi,j = ci = 0

and so all coefficients ci’s must be 0. Thus {e∗i } is linearly independent. Now we show that it spans V ∗. Indeed,
for φ ∈ V ∗, we have

n

∑
i=1
φ(ei)e∗i (ej) = φ(ej)

for all ej ∈ {ei}. Since φ is linear, φ(v) =
n

∑
i=1
φ(ei)e∗i (v) for all v ∈ V . Indeed {e∗i } forms a basis for V ∗.

Per the hint, we first show that direct sum can be distributed over tensor products, i.e.,

V1 ⊗ (V2 ⊕ V3) ≅ (V1 ⊗ V2)⊕ (V1 ⊗ V3).

Per the hint, consider a linear transformation f ∶ V1 × (V2 ⊕ V3)→ (V1 ⊗ V2)⊕ (V1 ⊗ V3) by

(v1, (v2, v3))↦ (v1 ⊗ v2, v1 ⊗ v3) for v1 ∈ V1, v2 ∈ V2, v3 ∈ V3.

Indeed this is a bilinear mapping (we have shown in HW12 that the mapping (v,w)↦ v⊗w is bilinear). Therefore
by the universal property, there exists a linear g ∶ V1 ⊗ (V2 ⊕ V3)→ (V1 ⊗ V2)⊕ (V1 ⊗ V3).

V1 × (V2 ⊕ V3)

V1 ⊗ (V2 ⊕ V3) (V1 ⊗ V2)⊕ (V1 ⊗ V3)

π
f

g

Therefore, if we identify V as R⊕ ⋅ ⋅ ⋅ ⊕
´¹¹¹¹¹¸¹¹¹¹¹¶

dim(V ) times

R and W as R⊕ ⋅ ⋅ ⋅ ⊕
´¹¹¹¹¹¸¹¹¹¹¹¶

dim(W ) times

R, applying the distributivity above tells us that we

can identify V ⊗W with (R⊗R)⊕ ⋅ ⋅ ⋅ ⊕
´¹¹¹¹¹¸¹¹¹¹¹¶

dim(V )dim(W ) times

(R⊗R). Since R⊗R ≅ R, this can be further identified with the direct
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sum of dim(V )dim(W ) copies of R. Naturally we have the standard basis for Rdim(V )dim(W ), and this can be
idenfitied with {ei ⊗ fj} via the (composite) map ei ⊗ fj ↦ (ei, fj)↦ δi,j . This proves the claim.

Problem 2

If V and W are vector spaces over R, there is a map T ∶ V ∗ ×W ∗ → (V ⊗W )∗ sending (φ,ψ) to (the
functional) (v ⊗ w) ↦ φ(v)ψ(w). Prove that this map is well-defined and bilinear (and thus induces a
linear map V ∗ ⊗W ∗ → (V ⊗W ∗)). If V and W are finite-dimensional, prove that this induced map is an
isomorphism.

Proof. Since φ and ψ are linear functionals, the mapping (v,w) ↦ φ(v)ψ(w) is bilinear. Therefore, once φ,ψ
are given, the mapping (v ⊗w)↦ φ(v)ψ(w) is uniquely determined. Hence T is well-defined.
Now we show the bilinearity of T (not of its output). Consider T (φ1+cφ2, ψ). The output is the linear functional
that maps (v⊕w) to (φ1 + cφ2)(v)ψ(w). By definition this is equal to φ1(v)ψ(w)+ cφ2(v)ψ(w), which is equal
to T (φ1, ψ) + cT (φ2, ψ). Hence T is linear with respect to the first argument, and one can show analogously
that it is also linear w.r.t. the second. Bilinearity then follows.

Now we assume dim(V ) = n < ∞ and dim(W ) = m < ∞. Let {ei}ni=1 and {fj}mj=1 be their bases, respectively.
For convenience call this induced map J . To show that J defines an isomorphism, it suffices to check that J
restricted to {e∗i ⊕ f∗j } is a bijection to {(ei ⊕ fj)∗} (the rest of the claim, i.e., bijectivity between V ∗ ×W ∗ and
(V ⊕W )∗, follows by bilinearity and properties of basis). For injectivity, if e∗i , ẽ∗i , f∗j , f∗j satisfy

S(e∗i ⊗ f∗j ) = S(ẽ∗i ⊗ f̃∗j ) Ô⇒ e∗i (v)f∗j (w) = ẽ∗i (v)f̃∗j (w)

for all v ⊗w ∈ V ⊗W , then fixing w tells us e∗i (v) = ẽ∗i (v) for all v, i.e., ẽ∗i = e∗i and likewise f̃∗j = f∗j . Hence S
is injective. For surjectivity, simply notice that the pre-image of the functional (v ⊗ w) ↦ ẽ(v)f̃(w) is simply
(ẽ⊗ f̃) ∈ V ∗ ⊗W ∗.

Problem 3

Let U ⊂ Rn be open and let f ∶ U → R be a smooth function (0-form). From f , define a differential 1-form
df by df(p) = (Df)p. Let {e1, ..., en} be the standard basis vectors of Rn and let {e∗1, ..., e∗n} be their dual
basis vectors. Prove that

df = ∂f

∂x1
e∗1 + ... +

∂f

∂xn
e∗n.

Proof. By definition (Df)p is given by
[ ∂f
∂x1
(p) ⋯ ∂f

∂xn
(p)] .

Notice that, for any ei (standard basis vector), since it would only keep ∂f/∂xi under multiplication, we have

df(p)(ei) = (Df)p(ei) =
∂f

∂xi
(p) for all p ∈ U.

Therefore, if x =
n

∑
i=1
ciei, we have

df(p)(x) = (Df)p(x) =
n

∑
i=1
ci(Df)p(ei) =

n

∑
i=1
ci
∂f

∂xi
(p)
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so indeed
df = ∂f

∂x1
e∗1 + ... +

∂f

∂xn
e∗n.

Problem 4

Recall that for 1 ⩽ i ⩽ n we have a coordinate projection function xi ∶ U → R sending a point in U to its ith

coordinate and thus a 1-form dxi. Prove that for all p ∈ U , we have dxi(p) = e∗i .

Proof. Using the previous part, dxi = ∂x
i

∂x1
e∗1 + ... +

∂xi

∂xn
e∗n =

∂xi

∂xi
e∗i = e∗i so dxi(p) = e∗i for all p.

Problem 5

Prove the following facts about pulls of 1-forms:

(1) If f ∶ V → R is a smooth function and F ∶ U → V is smooth then

F ∗(df) = d(f ○ F ).

(2) If α = f1α1 + ... + fNαN then

F ∗(α) = (f1 ○ F )F ∗(α1) + ... + (fN ○ F )F ∗(αN).

(3) If α = f1dx1 + ... + fmdxm and r ∶ [a, b]→ V is a smooth path with component r1, ..., rm, then

r∗(α) = f1(r(t))r′1(t)dt + ... + fm(r(t))r′m(t)dt.

Proof. (1) Since df = Df , we have

F ∗(df)p(v) = F ∗(Df)p(v) = DfF (p)(DFp(v))

= D(f ○ F )p(v) = d(f ○ F )(p)(v).

(2) Applying definition, we have

(F ∗(α))p(v) = αF (p)((DF )p(v))

= (f1α1 + ... + fNαN)F (p)((DF )p(v))

= (f1α1)F (p)((DF )p(v)) + ... + (fNαN)F (p)((DF )p(v))

= (f1 ○ F )(v)F ∗(α1)(v) + ... + (fN ○ F )(v)F ∗(αn)(v).

(3) Using (1) and (2),

r∗(α) = r∗(f1dx1 + ... + fmdxm)

= f1(r(t))r∗(dx1) + ... + fm(r(t))r∗(dxm)

= f1(r(t))r′1(t)dt + ... + fm(r(t))r′m(t)dt.
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