
HOMEWORK, WEEK 14

This assignment is due Monday, April 26. Handwritten solutions are acceptable but
LaTeX solutions are preferred. You must write in full sentences (abbreviations and common
mathematical shorthand are fine).

Along with gradients, there are related differential operators in multivariable calculus,
namely the curl and divergence of a vector field F in three dimensions. The theorems
curl ◦ grad = 0 and div ◦ curl = 0 are often discussed, and related concepts are introduced.
For example, a conservative vector field is a vector field F with F = grad(f) for some
function f . If curl(F ) = 0, one often asks whether F is a conservative vector field; the
answer to this question depends on the topology of U ⊂ R3.

The most natural setting for these concepts is that of differential k-forms for k ≥ 0, where
these ideas make sense in n dimensions and become considerably more unified. In particular,
we will begin working with k-forms for k > 1. An important goal will be understanding the
standard identifications

• 0-forms on R3 ↔ functions on R3

• 1-forms on R3 ↔ vector fields on R3

• 2-forms on R3 ↔ vector fields on R3

• 3-forms on R3 ↔ functions on R3;

with all k-forms on R3 being zero if k > 3.

Remark. Implicitly, these identifications use the standard inner product / Riemannian met-
ric on R3, as with the identification between df and ∇f mentioned in last week’s homework.
Note that when working only with functions and vector fields, it may not be immediately
clear whether a vector field ~F came from a 1-form or a 2-form (or a legitimate vector field);
similarly, a given function f might represent a 3-form instead of a 0-form.

Given these identifications, we will see that:

• The gradient operation grad (or ∇), taking functions to vector fields, becomes iden-
tified with the exterior derivative d taking 0-forms to 1-forms.
• The curl operation curl (or ∇×), taking vector fields to vector fields, becomes iden-

tified with the exterior derivative d taking 1-forms to 2-forms.
• The divergence operation div (or ∇·), taking vector fields to functions, becomes

identified with the exterior derivative d taking 2-forms to 3-forms.

The relations curl ◦ grad = 0 and div◦curl = 0 are special cases of the fundamental property
d2 = 0 for the exterior derivative.

(1) We start with the necessary preliminaries for identifying differential forms on R3 with
functions and vector fields as above. Recall the definition of differential k-forms from
last week’s homework:

Definition. If U ⊂ Rn is open, a differential k-form on U is a function α from U
to (Rn)∗ ⊗ · · · ⊗ (Rn)∗ (with k factors in the tensor product) which is “alternating”
(or anti-symmetric) in the following sense: viewing α(p) ∈ (Rn)∗ ⊗ · · · ⊗ (Rn)∗ as
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an element of (Rn ⊗ · · ·Rn)∗ by last week’s homework (i.e. a multilinear map from
Rn × · · · × Rn to R), the map α(p) is alternating in the sense that for all k-tuples
(v1, · · · , vk) of vectors in Rn, we have

α(p)(v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk) = −α(p)(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk)
for any i with 1 ≤ i ≤ k − 1. We say that α is of class Cr if its coordinates in the
standard basis of (Rn)∗ ⊗ · · · ⊗ (Rn)∗ (equivalently, any basis for this vector space)
are Cr functions from U to R.

In the convenient shorthand of last week’s homework, a differential k-form on U
is a function from U ⊂ Rn to Altk(Rn,R). For example, a differential 2-form α,
evaluated at a point p ∈ U , gives a bilinear map α(p) from Rn × Rn to R such that
α(p)(v, w) = −α(p)(w, v) for all v, w ∈ Rn.

The identifications we want will become more plausible once we know that
• dim Alt0(R3,R) = 1
• dim Alt1(R3,R) = 3
• dim Alt2(R3,R) = 3
• dim Alt3(R3,R) = 1;

in general, dim Altk(Rn,R) =
(
n
k

)
(and equals zero unless 0 ≤ k ≤ n). The case of

Alt0 is tautological since the tensor product of zero copies of Rn is defined to be R.
The case of Alt1 just says that (Rn)∗ has dimension n, which follows from last week’s
homework.

These dimension counts (and the identifications we want) will follow from the fact
that the wedge products

{dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 < · · · < ik ≤ n}
form a basis for Altk(Rn,R), but for this to make sense, we first need to define wedge
products.

Remark. In my view, the tensor product abstraction really shines when defining
wedge products. One constructs isomorphisms between Altk(Rn,R) and the sum-
mand ∧k(Rn)∗ of the “exterior algebra” ∧·(Rn)∗, on which multiplication has a very
natural definition. Wedge products of elements of Altk(Rn,R) are most naturally
defined using the isomorphisms to ∧k(Rn)∗. We will discuss this approach a bit in
lecture; for now, we will build intuition by taking a more concrete (but equivalent)
approach to wedge products.

Definition. If φ, ψ ∈ (Rn)∗, define an alternating bilinear map φ ∧ ψ from Rn × Rn

to R by
(φ ∧ ψ)(v, w) := (φ(v)ψ(w)− φ(w)ψ(v)) .

If α and β are 1-forms on U , then α∧ β is a 2-form on U defined by (α∧ β)(p) :=
α(p) ∧ β(p) (wedge products of differential forms are defined “pointwise”).

Note that we have ψ ∧ φ = −φ ∧ ψ (so φ ∧ φ = 0), and that wedge products are
bilinear:

(c1φ1 + c2φ2) ∧ ψ = c1φ1 ∧ ψ + c2φ2 ∧ ψ
and similarly in the second slot.
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Problem. Show that

{dx ∧ dy, dx ∧ dz, dy ∧ dz}

is a basis for the vector space of alternating bilinear maps from R3×R3 to R. (Strictly
speaking, dx, dy, and dz are differential 1-forms defined on R3, so we should evaluate
them at a point p in R3, but their values are independent of p and it is standard to
just write dx, dy, and dz).

Hint: By last week’s homework, you have dx(p) = e∗1, dy(p) = e∗2, and dz(p) = e∗3
for any p ∈ R3, so you want to show that {e∗1 ∧ e∗2, e∗1 ∧ e∗3, e∗2 ∧ e∗3} is a basis for this
space of alternating bilinear maps.

You know from the definition that each e∗i ∧ e∗j is bilinear and alternating (you
don’t need to prove this). You want to show that this set of three maps is linearly
independent and spans the space of alternating bilinear maps. For independence,
consider a general linear combination and evaluate it at pairs (ei, ej) of standard
basis vectors for i < j. You should get that each coefficient is zero.

To show that {e∗1∧ e∗2, e∗1∧ e∗3, e∗2∧ e∗3} spans the space of alternating bilinear maps,
consider an arbitrary map Φ : Rn × Rn → R that is alternating and bilinear. By
evaluating Φ on pairs (ei, ej) of standard basis vectors for i < j, you will get three real
numbers. Try to use these numbers to construct a linear combination of e∗1∧e∗2, e∗1∧e∗3,
and e∗2 ∧ e∗3 such that this linear combination agrees with Φ on all pairs of standard
basis vectors (ei, ej) (not necessarily with i < j).

(2) In multivariable calculus, one often studies the cross product of vectors in R3, which
is another vector in R3. Viewed in terms of the dual space (R3)∗ instead of R3, you
will show in this problem that the cross product becomes a special case of the wedge
product, taking in two elements of (R3)∗ = Alt1(R3,R) and producing an element of
the three-dimensional space Alt2(R3,R).

For an element α = a1e
∗
1 + a2e

∗
2 + a3e

∗
3 of R∗3 = Alt1(R3,R), define Φ(α) ∈ R3 to be

the vector (a1, a2, a3), or equivalently a1e1 + a2e2 + a3e3. Similarly, for an element

α = a12e
∗
1 ∧ e∗2 + a13e

∗
1 ∧ e∗3 + a23e

∗
2 ∧ e∗3

of Alt2(R3,R), define Φ(α) ∈ R3 to be the vector (a23,−a13, a12), or equivalently
a23e1 − a13e2 + a12e3.

Remark. Seeing that this is the natural vector in R3 to define given an element of
Alt2(R3,R) involves looking at the Hodge star operator, which will make an appear-
ance in next week’s problem set. The minus sign disappears if we use the basis vector
e∗3 ∧ e∗1 rather than e∗1 ∧ e∗3 in the basis for Alt2(R3,R).

Problem. Show that for α, β ∈ (R3)∗, we have

Φ(α ∧ β) = Φ(α)× Φ(β),

where × denotes the usual cross product of vectors in R3.
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Hint: Write out α ∧ β in terms of basis expansions α = a1e
∗
1 + a2e

∗
2 + a3e

∗
3 and

β = b1e
∗
1 + b2e

∗
2 + b3e

∗
3. Then expand this out using the basic properties of wedge

products stated above, write the result in terms of the basis for Alt2(R3,R) that
we’re using, and compute Φ(α ∧ β) with these basis coefficients. Compare the result
to Φ(α)× Φ(β), computed as in multivariable calculus.

(3) More generally, the abstract definition of wedge products will imply that if φ1, . . . , φk
are in (Rn)∗, then

φ1 ∧ · · · ∧ φk =
∑
σ∈Sk

(−1)sign(σ)φσ(1) ⊗ · · · ⊗ φσ(k),

where Sk is the symmetric group on k letters (of size k!) and sign(σ) is the number of
transpositions modulo 2 in any factorization of σ into transpositions (if these ideas
are unfamiliar, don’t worry; you won’t be asked to prove things about symmetric
groups or permutations). The abstract definition also implies basic properties like
associativity of wedge products, and makes it clear that wedge products of elements
of (Rn)∗ = Alt1(Rn,R) form a spanning set for Altk(Rn,R). Thus, the above formula
suffices for computing all wedge products.

In particular, for φ1, φ2, φ3 ∈ (R3)∗, we have

φ1 ∧ φ2 ∧ φ3 = φ1 ⊗ φ2 ⊗ φ3

− φ1 ⊗ φ3 ⊗ φ2

+ φ2 ⊗ φ3 ⊗ φ1

− φ2 ⊗ φ1 ⊗ φ3

+ φ3 ⊗ φ1 ⊗ φ2

− φ3 ⊗ φ2 ⊗ φ1,

which we can take as a definition if we want.

Problem. Show, using the above concrete definition, that

{dx ∧ dy ∧ dz}
is a basis for Alt3(R3,R).

Hint: You should show that dx∧dy∧dz is alternating, since it’s not as immediate
as before, but since this is a bit tedious you can just show one representative com-
putation (things are cleaner if you use the general formula above plus facts about
permutations, but I don’t want to assume knowledge of these facts). So, for example,
you can just show that φ1∧φ2∧φ3 sends (v2, v1, v3) to the negative of where it sends
(v1, v2, v3) (the “i = 1 case” in the definition we’ve been using for Altk(Rn,R)). You
can just say the “i = 2 case” is similar.

You can check dx ∧ dy ∧ dz is nonzero by plugging in the appropriate (v1, v2, v3),
so to finish the proof, it suffices to show that Alt3(R3,R) is one-dimensional. Try
to do this cleanly by applying a standard linear-algebra fact about “uniqueness of
determinants” (if this fact is unfamiliar, you can ask me).

(4) We have the following consequences of the above problems plus what we’ve said
before:
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• A zero-form on R3 is a function f on R3.
• A one-form on R3 can be written uniquely as fdx+ gdy + hdz where f, g, h are

functions on R3.
• A two-form on R3 can be written uniquely as fdx ∧ dy + gdx ∧ dz + hdy ∧ dz

where f, g, h are functions on R3.
• A three-form on R3 can be written uniquely as fdx∧dy∧dz where f is a function

on R3.

In general, a differential k-form α on Rn can be written uniquely as

α =
∑

1≤i1<···<ik≤n

fi1,...,ikdx
i1 ∧ · · · ∧ dxik

(we will see this when we discuss wedge products abstractly in lecture). This expres-
sion is especially convenient when defining the exterior derivative:

Definition. If

α =
∑

1≤i1<···<ik≤n

fi1,...,ikdx
i1 ∧ · · · ∧ dxik

is a differential k-form on an open subset U of Rn, its exterior derivative dα is the
(k + 1)-form on U defined by

dα =
∑

1≤i1<···<ik≤n

(dfi1,...,ik) ∧ dxi1 ∧ · · · ∧ dxik

(thus, if α = f is a zero-form, then dα = df as defined on last week’s homework).

A crucial fact about d is that d ◦ d = 0, i.e. d(d(α)) = 0 for any k-form α. One
can prove this in general; here we’ll just prove it for forms on R3.

Problem. Prove that d ◦ d = 0 for d acting on:
(a) 0-forms on R3

(b) 1-forms on R3

(the equation is automatic for 2-forms and 3-forms on R3). You may assume Corollary
5.17 of Pugh, on equality of mixed partials, without proof.

Hint: For 0-forms, first write df = ∂f
∂x
dx+ ∂f

∂y
dy+ ∂f

∂z
dz as in the previous problem

set. Then use the above definition to compute d(df). Express the result in terms of
the three basic 2-forms dx∧dy, dx∧dz, and dy∧dz. If you find something like dy∧dx,
write it as −dx∧dy. If you find dx∧dx (etc.), it’s zero. The computation for 1-forms
is similar, express the result of d(d(α)) in terms of the basic 3-form dx ∧ dy ∧ dz on
R3.

Remark. Differential forms α with d(α) = 0 are called closed ; differential forms of
the form α = d(β) are called exact. The equation d◦d = 0 (or “d2 = 0”) says that all
exact forms are closed. The equation d2 = 0 is the key indicator of a “chain complex”

of which one can take (co)homology groups ker(d)
im(d)

. In this case (closed k-forms modulo

exact k-forms) the result is called the kth “de Rham cohomology” of the domain U .
It is isomorphic to the kth (real) “ordinary cohomology,” which measures topological
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information about U (roughly “the number of k+1-dimensional holes”). The exterior
derivative d also satisfies a Leibniz rule: we have

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ
if α is a k-form.

(5) We can interpret k-forms on R3 in terms of familiar vector calculus quantities as
follows, compatibly with the above problem on cross products
• A 0-form on R3 is just a function on R3 as usual.

• A 1-form αxdx+αydy+αzdz on R3 can be identified with the vector field

αxαy
αz

.

• A 2-form αxdy ∧ dz + αydz ∧ dx+ αzdx∧ dy (note the choice of basis!) can also

be identified with the vector field

αxαy
αz

.

• A 3-form fdx ∧ dy ∧ dz on R3 can be identified with the function f .
Note that a vector field on R3 could potentially represent a 1-form or a 2-form, and
a function on R3 could potentially represent a 0-form or a 3-form.

Remark. The symmetry between k-forms and 3 − k-forms is related to Poincaré
duality, an important relationship in algebraic topology.

Problem. Let α be a 1-form on R3, and let V be the corresponding vector field.
Show that the 2-form dα corresponds to the vector field curl(V ).

Similarly, let β be a 2-form on R3, and let W be the corresponding vector field.
Show that the 3-form dβ corresponds to the function div(W ).

Hint: For the first part, write α in terms of dx, dy, and dz so you can take dα.
Rewrite the result in the basis {dy ∧ dz, dz ∧ dx, dx ∧ dy} so you can extract the
corresponding vector field. The second part is similar.

Remark. From this problem, we recover the familiar identities curl ◦ grad = 0 and
div ◦ curl = 0 from the equation d2 = 0. The de Rham cohomology in degree 1
measures the maximal number of irrotational (curl = 0) vector fields on U that are
“independent modulo vector fields that are gradients;” it’s an interesting fact that
this quantity depends only on the topology of U .

In fact, if U is homeomorphic to an open ball, all cohomology groups of U vanish
for k > 0. On such U ⊂ R3, all vector fields F with curl(F ) = 0 are conservative.
However, if U has more complicated topology (e.g. if U is an open neighborhood of
a circle or torus), then this property may fail.


