
HOMEWORK, WEEK 2

This assignment is due Friday, January 29 in lecture. Handwritten solutions are acceptable
but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1)

Definition. Let (A,�) be a directed set and let (X, d) be a metric space. A net
f : A→ X is Cauchy if, for all ε > 0, there exists a0 ∈ A such that for all a1, a2 ∈ A
with a0 � a1 and a0 � a2, we have

d(f(a1), f(a2)) < ε.

(a) Prove that every convergent net in (X, d) is Cauchy.

(b) Assuming that (X, d) is complete, prove that every Cauchy net in (X, d) con-
verges.

Hint: Given a Cauchy net f , define a sequence in X as follows: choose a1 ∈ A
such that for a1 � a, b we have d(f(a), f(b)) < 1, and set x1 = f(a1). Then
choose a2 ∈ A with a1 � a2 such that for a2 � a, b we have d(f(a), f(b)) < 1/2,
and set x2 = f(a2) (why is this possible?). Continuing in this manner (give a bit
more detail), define a sequence (xn)∞n=1 in X and show it’s a Cauchy sequence.
Conclude it has a limit L ∈ X, and argue that the net f converges to L.

(c) Let f be a real- or complex-valued function on [1,∞) such that the improper
Riemann integral

∫∞
1
|f(x)|dx exists. Prove that

∫∞
1

f(x)dx exists.

Hint: Let (A,�) = ([1,∞),≤) and consider the A-nets in R defined by a 7→∫ a

1
|f(x)|dx and a 7→

∫ a

1
f(x)dx. Apply the previous parts of the problem along

with monotonicity of the integral.

(2) Pugh, Exercise 1.45(a–f) (most of these are short). This problem introduces the limes
superior and limes inferior (lim sup and lim inf) which will appear at various points
in our discussion of series. For part (d), you can draw pictures if you want but it’s
not required; give an example of strict inequality in the first (≤) statement and an
example where the equality in the second statement does not hold. The formula in
part (e) should say that the lim inf of a sequence (an) is equal to the lim sup of a
different sequence.

(3) This problem explores the properties of the logarithm and exponential functions as
rigorously defined using the integral

log(x) =

∫ x

1

1

t
dt.

You may assume the following slight generalization of the integration by substitution
theorem without proof:
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Theorem. Let u be a diffeomorphism from a compact interval I to a compact interval
J with u′ Riemann integrable, and suppose I has endpoints {a, b}. Let f be Riemann
integrable on J . Then∫ b

a

f(u(x))u′(x)dx =

∫ u(b)

u(a)

f(u)du,

where we follow tradition in using the letter “u” both for a function and for the
dummy variable of integration on the right hand side.

This version differs only from the version in the lecture / book in that here we do
not assume a < b or that u′ > 0 (since u is a diffeomorphism we have either u′ > 0 or
u′ < 0, but u′ < 0 is allowed here). An integral from a to b for a > b is defined as the
negative of the integral from b to a. This version of the integration by substitution
theorem can be proved by breaking into cases based on the sign of u′ and the sign of
b− a.

Practically speaking, this generalization means you are free to do u-substitution as
you learned in calculus, assuming that u is a diffeomorphism with Riemann integrable
derivative. You don’t need to check further conditions like u′ > 0 if you make sure
to update the limits of integration appropriately.

(a) Prove that if x, y ∈ (0,∞) then log(xy) = log(x) + log(y). Hint : By a corollary
in Chapter 3.2 of Pugh, you can write the integral

∫ xy

1
1
t
dt as∫ x

1

1

t
dt +

∫ xy

x

1

t
dt.

The first term is log(x); use integration by substitution to show that the second
term is log(y).

(b) Prove that if x ∈ (0,∞) and n is an integer then log(xn) = n log(x). Hint :
When n is positive, this follows from the previous part and induction. For n
negative, use the first part of the problem to deduce the result from the case of
n positive. How about n = 0?

(c) Prove that log : (0,∞)→ (−∞,∞) is surjective. Hint : first, show that log(2) ≥
1
2
. This can be done using monotonicity of the integral (compare 1/t to a step

function on the interval [1, 2]). Then show that log(2n) ≥ n
2
, and deduce that

the image of log is unbounded above. Show the image of log is also unbounded
below, using unboundedness above and the equation log(xy) = log(x) + log(y).
Conclude by the intermediate value theorem (why is log continuous?) that the
image of log is all of R.

It follows that the inverse function exp to log is defined on all of R.

Definition. Let e := exp(1) and, for real numbers a, b with a > 0, let

ab := exp(b log(a)).

(d) Prove that exp(x) = ex for all x ∈ R. Hint: write out the definition of ex; what
is log(e), given that e = exp(1)?
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(e) Prove that if p and q are integers with q 6= 0 and x ∈ (0,∞), then

exp((p/q) log(x))

is the unique y ∈ (0,∞) with yq = xp (both yq and xp are repeated multiplica-
tion here; existence of y is guaranteed by the intermediate value theorem and
uniqueness by the mean value theorem, both applied to f(x) = xq).

Hint : first, use a previous part of the problem to rewrite p log(x) in a more useful
form. Then rewrite xp as yq where y is the right hand side of the equation, and
use the same previous part to evaluate log(yq). You should get that the left hand
side equals y as well.

This problem tells us that in the case where exponentiation of real numbers
can be understood in terms of repeated multiplication (i.e. the case of rational
exponents), our new generalized definition for real exponents agrees with the old
one.

(f) For a ∈ (1,∞) and b ∈ (0,∞), define loga(b) = log(b)
log(a)

(note that log = loge).

Prove that we have aloga(b) = b, so that this is a valid definition of base-a log-
arithms. Hint : expand out aloga(b) using the definition of exponentiation given
above.

(g) Prove that the harmonic series
∑∞

k=1 1/k diverges. Hint : use the integral test
and the surjectivity of log, proved above.


