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Cauchy Nets

(1) This sub-problem defines Cauchy nets and shows some of its properties.

Let (A, <) be a directed set and let (X,d) be a metric space. A net f: A - X is Cauchy if, for all

€ >0, there exists ag € A such that for all ay,as € A with ag < a1 and ag < as, we have

d(f(a1), f(a2)) <e.

(a) Prove that every convergent net in (X,d) is Cauchy.
Proof. Let f: A— X be a convergent net with lim f = L. Let € > 0 be given. We want to show that
there exists ag € A such that if ag < a1,as then d(f(a1), f(az)) <e.
Indeed, by convergence of f, there exists af, € A such that d(f(a),L) < ¢/2 for all a € A satisfying
af, < a. It follows that, for all aj,as with aj < a; and af, < as, we have

A(f (1), f(a2)) <d(f(ar). L) + (L. faz) < 5+ 5 =,

and the claim follows. O

(b) Assuming (X,d) is complete, prove that every Cauchy net in (X,d) converges.

Proof. Let f: A— X be a Cauchy net. We will construct a sequence {x, },>1 according to the hint
and show f is convergent.

Since f is Cauchy, there exists aj € a such that if a; < a,b we have d(f(a), f(b)) < 1. Define x; := a;.
Now pick as € A such that a; < as and (ag < a,be A = d(f(a), f(b)) < 1/2). (This is obviously
possible if we drop the condition a; < as, and if this binary relation is not automatically fulfilled, i.e.,
ay % az, we simply need to use the existence of an upper bound and set it as our new as.) Inductively,
we may define a,, € A such that a,_; < a, and (a, <a,be A = d(f(a)-f(b)) <1/n). Now consider
the sequence {xy, }ns1 = {f(an)}ns1-

First observation: {x,} converges in X. Indeed, for any given € > 0, for sufficiently large N € N with

1/N <€, we have (n,m > N = d(z,,2Tm) < 1/N <€), i.e., it is first Cauchy. Therefore, by the
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completeness of X we know it converges to some L € X. With this convergence, now we shall show f
converges to L as well.

Again let € > 0 be given. Since {x,,} converges there exists Ny € N with d(z,, L) < ¢/2. On the other
hand, there exists N € N such that 1/m < €/2. Then (an, <a,be A = d(f(a) - f(b)) <€/2). Now
we define N := max{Ny, No}. It follows that, for all a € A with ay < a,

A(f(a) ~ L) <d(f(a) = f(an)) +d(f(an) -L) < 5+ =c,

=N

from which the claim of convergence of the Cauchy net follows. O

(c) Let f be a real- (or complex-)valued function on [1,00) such that the improper Riemann integral

f |f(2)] do exists. Prove that f f(z) dz exists.
1 1

Pugh,

Proof. According to the hint, we consider the directed set (4,<) = ([1,00),<) and nets §,§, both
from A to R, defined by

S:a»[af(x)dx: and@:a»fla\f(mﬂdw.

Let € > 0 be given. By assumption, f |f(x)| do exists, so § converges and is in particular Cauchy.
1

Therefore, there exists ¢ € R such that if a > b > ¢,

I5(b) - F(a)| = fablf(x)| dz < e.

Now we want to show that § is convergent. By the completeness of R and results from previous parts

it suffices to show that it is Cauchy. Indeed, notice that, for b > a > ¢,

=‘/abf(x)dx

Therefore § is Cauchy and our claim follows. O

< /b|f(x)| dz <e.

50 -5@1=| [ 1t [ as

Ex.1.45, lim sup & lim inf

(2) Complete Pugh, Exercise 1.45.

Let {an}ns1 be a sequence of real numbers. It is bounded if the set A := {a1,as,...} is bounded. The

limit supremum, or lim sup, of a bounded sequence {a,} as n — oo is

limsupa, = lim (sup ak) .

n—oo n=00 \ kxn

(a) Why does the lim sup exist?
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Solution

The lim sup exists because of the G.L.B. (greatest lower bound) property stated back in Chapter

1. Notice that, if n1 < ng, sup ax > sup ax (since ne > n; means we are taking the supremum of
k>n1 k>no

fewer terms of the sequence). Hence the sequence {s, },>1 defined by s, := supay is monotone
k>n

decreasing. But since {a,} is bounded by, say [-M, M], {s,} is also bounded below by —M.

Therefore limsup a,, = lim s,, exists.

n—oo n—oo

(b) If sup{an} = oo, how should we define limsupa,,?

n— oo

(¢) If lim a, = —o0, how should we define limsup a,,?

n—o00
(d) When is it true that
limsup(a, + b,) <limsupa,, +limsupb,
n—oo n—o0 n—oo
limsup c(a,) = climsupa,?

n—oo n—oo

Solution

Always (assuming we are only looking at bounded sequences). For the first one, since sup of a
set is no less than the sup of its subset:
sup(ax + bg) <sup(a; +by) = supa; +sup by.

k>n jzn jzn k>n
k>n

As n increases we see sup(ay + bg) is non-increasing and bounded below, it makes sense to take
k>n

lim on both sides, which gives

n—oo

limsup(a, + b,) <limsupa, + limsupb,,.

n— oo n—oo n—oo0

Remark. For unbounded sequences, if the RHS is not of form co — co, the < also holds.
However, “=" does not always hold: counsider {a,}ns1 := {(-1)"n} and {b, }n>1 = {-an}.

They both have lim sup +o0o but their sum is the constant sequence 0.

For the second one, if ¢ > 0, the claim follows from the fact that if a sequence {x,} — z then

{cxp} = cx. Otherwise, if ¢ <0, since limsup —|c|a,, = - liminf|c|a,, = -|¢|liminf a,,, we need
n—oo n—>o0 n—>o00

—le|liminf a,, = climinf a,, = climsupa,
n—oo n—00

n—>00
for the original equality to hold. Visualizing such sequences? Think of a sequence with two
horizontal lines equidistant to the z-axis (on different sides, of course) as its “asymptotes”. (Well,

we haven’t defined lim inf yet...)
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(e) Define the limit infimum (lim inf) of a real sequence, and find a formula relating it to lim inf.

Solution

Similar to lim sup, for a bounded sequence {a,,},>1 we define liminf a,, := lim (inf ak).
n—>00

n—oo \ k>n

In extreme cases:

o +oo if limy, e @y = 00, and
liminf :=
n—oo

—oo if inf{a,} = —oo.

A formula that connects lim inf to lim sup:

limsup(-a,) = - liminf(a,).

n—oo

(f) Prove that lim a, exists if and only if the sequence {a,} is bounded and liminf a,, = limsup a,,.

n—»oo n—00 n—soco

Proof. = : suppose lim a, = L. We immediately know {a,} is bounded. To show the other
n—>o0

equality, we can show that two sides differ by < e for all € > 0. Since {a,} converges, there exists

N € N such that |a,, — L| < /4 for all m > N. Then, taking supremum and infimum on m suggests

that the difference is at most €¢/4 (i.e., < ¢/4). Therefore,

supag — L| +

sup ay — inf ay =
k>N k>N

inf ap, — L
k>N > k>N

>

Recall that {s,,} := {supay} form a monotone decreasing sequence and the sequence of infimums form
kzn
a monotone increasing sequence. Therefore {A,,} := {supay, - Iicnf ay} is also monotone decreasing, so
k>n 2n

all terms after A,, all <e. Since € is arbitrary we conclude that A,, - 0. Hence “ = ” follows.

< : suppose {a,} is bounded and its lim inf and lim sup agree, and we define this value to be L.
Suppose, for contradiction, that the sequence does not converge. Then for some € > 0, there exists a
subsequence {a,, } such that |a,, — L| > € for all n;. WLOG assume infinitely many terms of {a,,} are

greater than L, in particular > L + €. Immediately we see that limsupa,, > L + € (since any sequence

n—oo

of form (2., Zp+1,...) contains some element of {a,,} and so the its supremum is at least L +¢€), a

contradiction. Therefore {a,} must converge and converge precisely to L. O

Logarithm and Exponential Functions Done Rigorously

(3) This problem explores the properties of the logarithm and exponential functions as rigorously defined using

x 1 -
log(z) = f1 7 dt.
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Theorem: a slight generalization of integration by substitution

Let u be a diffeomorphism from a compact interval I to a compact interval J with v’ Riemann integrable,

and suppose I has endpoints {a,b}. Let f be Riemann integrable on J. Then

b ~ . - u(b) ) di
[ rw@y@az= [ dn

(a) Prove that if z,y € (0, 00) then log(zy) = log(x) + log(y).
Proof. (By the hint:)

zy 1l z] Ty 1
log(zy) = f S di- f Sdi+ f 2 df (Pugh, Cor.3.2.30)
1 t 1t T t
vl o
= log(z) + fl T 1dt (substituting u(t) :=t)

= log(z) +log(y).

(b) Prove that if 2 € (0,00) and n is an integer then log(z™) = nlog(z).

Proof. (By the hint:) if n > 0 then setting y := z from (a) and using it inductively proves the claim.
If n =0, by definition

11 .
log(x") = log(1) :fl ?dt:O:Ox.

If n <0, consider log(z™z™") =log(1) = 0, while (a) suggests that

0=log(z"z™™) =log(z™) +log(z™™) = log(z™) = nlog(x) for n <0 as well.
—_———
-nlog(x)

(¢) Prove that log: (0,00) - (—0c0, 00) is surjective.

Proof. (By the hint:) first notice that log(2) = f121~ dt » ff% di=(2-1)- % = % Therefore by
(b), if n > 0, we have
log(2"™) © nf12 i dt >

Letting n — oo we see that log(2") — oo, and so log is unbounded from above. From (b) we also know
that log(27"27™) = 0 = log(2") + log(2™") so, for n > 0, log(27™) = —log(2™). Therefore as n — oo we
have log(2™") — —o0 and so log is unbounded from below as well.

Now, it remains to notice that, by FTC (part I), since 1/f is continuous everywhere for ¢ # 0, in
particular ¢ > 0, the log function is continuous on (0, c0). Since anything of form log(2™) or log(27™")

are on this domain, by IMT it follows that the image of log is unbounded both from below and above,

and it surjects onto R. O
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Let exp =: (—00,00) = (0,00) be the inverse function to log. Let e:=exp(1l) and, for real numbers

a,b with a > 0, define
a® := exp(blog(a)).

(d) Prove that exp(z) = ¢e” for all z € R.

Proof. (By the hint:) By definition, since e = exp(1) > 0, e” = exp(xlog(e)) = exp(x - logexp(1l)) =
O

exp(z).
(e) Prove that if p and ¢ are integers with ¢ # 0 and x € (0, 00), then

exp((p/q)log(x))

is the unique y € (0, 00) with y9 = zP.

Proof. (By the hint:) since f(£) = #? is continuous and monotone on (0,00), IMT and MVT
suggests the existence and uniqueness of solution of y to y? = xP. Therefore it suffices to show the

above expression is a solution. Indeed,

[exp((p/q) log(x))]? = exp g - logexp[(p/g) log(2)]] (definition of exp)

=exp[q- (p/q) log(w)]
=exp [plog(x)] = explog(z?) = zP.

O
(f) For a€(1,00) and b€ (0, 00), define
log(b)
1 b) = .
Prove that we have a!°2«(?) = b so that this is a valid definition of base-a logarithms.
Proof. (By the hint:) expanding a'°8«(*) using the definition, we have
log,, (b) log(b)
a %" = exp[log,(b)log(a)] = exp log(a) | = explog(b) = b.
log(a)
O

diverges.

T =

(g) Prove that the harmonic series Y
k=1

21 ©1 .
Proof. (By the hint:) we consider the integral test between Z z and [ 7 dt. Notice that we can
k=1 1

oo 1 - -
/ = dt since the floor function ltJ < t. However, we also
1

g

> 1 1 .
treat Z A as f — dt which dominates
k=1 1

know

[ee) 1 - -

f 5 di = lim df = lim log(n) — oo
1 n—oo J1 n—oo

as log surjects onto R. Therefore the harmonic series diverges.



