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Cauchy Nets

(1) This sub-problem defines Cauchy nets and shows some of its properties.

Definition

Let (A,⪯) be a directed set and let (X,d) be a metric space. A net f ∶ A → X is Cauchy if, for all
ϵ > 0, there exists a0 ∈ A such that for all a1, a2 ∈ A with a0 ⪯ a1 and a0 ⪯ a2, we have

d(f(a1), f(a2)) < ϵ.

(a) Prove that every convergent net in (X,d) is Cauchy.

Proof. Let f ∶ A→ X be a convergent net with lim f = L. Let ϵ > 0 be given. We want to show that
there exists a0 ∈ A such that if a0 ⪯ a1, a2 then d(f(a1), f(a2)) < ϵ.
Indeed, by convergence of f , there exists a′0 ∈ A such that d(f(ã), L) < ϵ/2 for all ã ∈ A satisfying
a′0 ⪯ ã. It follows that, for all a1, a2 with a′0 ⪯ a1 and a′0 ⪯ a2, we have

d(f(a1), f(a2)) ⩽ d(f(a1), L) + d(L, f(a2)) <
ϵ

2
+ ϵ

2
= ϵ,

and the claim follows.

(b) Assuming (X,d) is complete, prove that every Cauchy net in (X,d) converges.

Proof. Let f ∶ A → X be a Cauchy net. We will construct a sequence {xn}n⩾1 according to the hint
and show f is convergent.
Since f is Cauchy, there exists a1 ∈ a such that if a1 ⪯ a, b we have d(f(a), f(b)) < 1. Define x1 ∶= a1.
Now pick a2 ∈ A such that a1 ⪯ a2 and (a2 ⪯ a, b ∈ A Ô⇒ d(f(a), f(b)) < 1/2). (This is obviously
possible if we drop the condition a1 ⪯ a2, and if this binary relation is not automatically fulfilled, i.e.,
a1 ⪯̸ a2, we simply need to use the existence of an upper bound and set it as our new a2.) Inductively,
we may define an ∈ A such that an−1 ⪯ an and (an ⪯ a, b ∈ A Ô⇒ d(f(a)−f(b)) < 1/n). Now consider
the sequence {xn}n⩾1 ∶= {f(an)}n⩾1.
First observation: {xn} converges in X. Indeed, for any given ϵ > 0, for sufficiently large N ∈ N with
1/N < ϵ, we have (n,m ⩾ N Ô⇒ d(xn, xm) < 1/N < ϵ), i.e., it is first Cauchy. Therefore, by the
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completeness of X we know it converges to some L ∈X. With this convergence, now we shall show f

converges to L as well.
Again let ϵ > 0 be given. Since {xn} converges there exists N1 ∈ N with d(xn, L) < ϵ/2. On the other
hand, there exists N2 ∈ N such that 1/m < ϵ/2. Then (aN2 ⪯ a, b ∈ A Ô⇒ d(f(a) − f(b)) < ϵ/2). Now
we define N ∶=max{N1,N2}. It follows that, for all a ∈ A with aN ⪯ a,

d(f(a) −L) ⩽ d(f(a) − f(aN)) + d(f(aN)
=xN

−L) < ϵ

2
+ ϵ

2
= ϵ,

from which the claim of convergence of the Cauchy net follows.

(c) Let f be a real- (or complex-)valued function on [1,∞) such that the improper Riemann integral

∫
∞

1
∣f(x)∣ dx exists. Prove that ∫

∞

1
f(x) dx exists.

Proof. According to the hint, we consider the directed set (A,⪯) ∶= ([1,∞),⩽) and nets F,F, both
from A to R, defined by

F ∶ a↦ ∫
a

1
f(x) dx = and F ∶ a↦ ∫

a

1
∣f(x)∣ dx.

Let ϵ > 0 be given. By assumption, ∫
∞

1
∣f(x)∣ dx exists, so F converges and is in particular Cauchy.

Therefore, there exists c ∈ R such that if a > b > c,

∣F(b) − F(a)∣ = ∫
b

a
∣f(x)∣ dx < ϵ.

Now we want to show that F is convergent. By the completeness of R and results from previous parts
it suffices to show that it is Cauchy. Indeed, notice that, for b > a > c,

∣F(b) − F(a)∣ = ∣∫
b

1
f(x) dx − ∫

a

1
f(x) dx∣ = ∣∫

b

a
f(x) dx∣ ⩽ ∫

b

a
∣f(x)∣ dx < ϵ.

Therefore F is Cauchy and our claim follows.

Pugh, Ex.1.45, lim sup & lim inf

(2) Complete Pugh, Exercise 1.45.

Definition

Let {an}n⩾1 be a sequence of real numbers. It is bounded if the set A ∶= {a1, a2, . . .} is bounded. The
limit supremum, or lim sup, of a bounded sequence {an} as n→∞ is

lim sup
n→∞

an = lim
n→∞

(sup
k⩾n

ak) .

(a) Why does the lim sup exist?
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Solution

The lim sup exists because of the G.L.B. (greatest lower bound) property stated back in Chapter
1. Notice that, if n1 ⩽ n2, sup

k⩾n1

ak ⩾ sup
k⩾n2

ak (since n2 ⩾ n1 means we are taking the supremum of

fewer terms of the sequence). Hence the sequence {sn}n⩾1 defined by sn ∶= sup
k⩾n

ak is monotone

decreasing. But since {an} is bounded by, say [−M,M], {sn} is also bounded below by −M .
Therefore lim sup

n→∞
an = lim

n→∞
sn exists.

(b) If sup{an} =∞, how should we define lim sup
n→∞

an? Simply ∞.

(c) If lim
n→∞

an = −∞, how should we define lim sup
n→∞

an? Simply −∞.

(d) When is it true that

lim sup
n→∞

(an + bn) ⩽ lim sup
n→∞

an + lim sup
n→∞

bn

lim sup
n→∞

c(an) = c lim sup
n→∞

an?

Solution

Always (assuming we are only looking at bounded sequences). For the first one, since sup of a
set is no less than the sup of its subset:

sup
k⩾n
(ak + bk) ⩽ sup

j⩾n
k⩾n

(aj + bk) = sup
j⩾n

aj + sup
k⩾n

bk.

As n increases we see sup
k⩾n
(ak + bk) is non-increasing and bounded below, it makes sense to take

lim
n→∞

on both sides, which gives

lim sup
n→∞

(an + bn) ⩽ lim sup
n→∞

an + lim sup
n→∞

bn.

Remark. For unbounded sequences, if the RHS is not of form ∞−∞, the ⩽ also holds.
However, “=” does not always hold: consider {an}n⩾1 ∶= {(−1)nn} and {bn}n⩾1 ∶= {−an}.
They both have lim sup +∞ but their sum is the constant sequence 0.

For the second one, if c ⩾ 0, the claim follows from the fact that if a sequence {xn} → x then
{cxn}→ cx. Otherwise, if c < 0, since lim sup

n→∞
−∣c∣an = − lim inf

n→∞
∣c∣an = −∣c∣ lim inf

n→∞
an, we need

−∣c∣ lim inf
n→∞

an = c lim inf
n→∞

an = c lim sup
n→∞

an

for the original equality to hold. Visualizing such sequences? Think of a sequence with two
horizontal lines equidistant to the x-axis (on different sides, of course) as its “asymptotes”. (Well,
we haven’t defined lim inf yet...)
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(e) Define the limit infimum (lim inf) of a real sequence, and find a formula relating it to lim inf.

Solution

Similar to lim sup, for a bounded sequence {an}n⩾1 we define lim inf
n→∞

an ∶= lim
n→∞

(inf
k⩾n

ak).
In extreme cases:

lim inf
n→∞

∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+∞ if limn→∞ an =∞, and

−∞ if inf{an} = −∞.

A formula that connects lim inf to lim sup:

lim sup
n→∞

(−an) = − lim inf
n→∞

(an).

(f) Prove that lim
n→∞

an exists if and only if the sequence {an} is bounded and lim inf
n→∞

an = lim sup
n→∞

an.

Proof. Ô⇒ ∶ suppose lim
n→∞

an = L. We immediately know {an} is bounded. To show the other
equality, we can show that two sides differ by < ϵ for all ϵ > 0. Since {an} converges, there exists
N ∈ N such that ∣am − L∣ < ϵ/4 for all m ⩾ N . Then, taking supremum and infimum on m suggests
that the difference is at most ϵ/4 (i.e., ⩽ ϵ/4). Therefore,

sup
k⩾N

ak − inf
k⩾N

ak = ∣ sup
k⩾N

ak −L∣ + ∣ inf
k⩾N

ak −L∣ ⩽
ϵ

2
< ϵ.

Recall that {sn} ∶= {sup
k⩾n

ak} form a monotone decreasing sequence and the sequence of infimums form

a monotone increasing sequence. Therefore {∆n} ∶= {sup
k⩾n

ak − inf
k⩾n

ak} is also monotone decreasing, so

all terms after ∆n all < ϵ. Since ϵ is arbitrary we conclude that ∆n → 0. Hence “Ô⇒ ” follows.

⇐Ô ∶ suppose {an} is bounded and its lim inf and lim sup agree, and we define this value to be L.
Suppose, for contradiction, that the sequence does not converge. Then for some ϵ > 0, there exists a
subsequence {ani} such that ∣ani −L∣ ⩾ ϵ for all ni. WLOG assume infinitely many terms of {ani} are
greater than L, in particular > L + ϵ. Immediately we see that lim sup

n→∞
an ⩾ L + ϵ (since any sequence

of form (xn, xn+1, . . . ) contains some element of {ani} and so the its supremum is at least L + ϵ), a
contradiction. Therefore {an} must converge and converge precisely to L.

Logarithm and Exponential Functions Done Rigorously

(3) This problem explores the properties of the logarithm and exponential functions as rigorously defined using

log(x) = ∫
x

1

1

t̃
dt̃.
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Theorem: a slight generalization of integration by substitution

Let u be a diffeomorphism from a compact interval I to a compact interval J with u′ Riemann integrable,
and suppose I has endpoints {a, b}. Let f be Riemann integrable on J . Then

∫
b

a
f(u(x̃))u′(x̃) dx̃ = ∫

u(b)

u(a)
f(ũ) dũ.

(a) Prove that if x, y ∈ (0,∞) then log(xy) = log(x) + log(y).

Proof. (By the hint:)

log(xy) = ∫
xy

1

1

t̃
dt̃ = ∫

x

1

1

t̃
dt̃ + ∫

xy

x

1

t̃
dt̃ (Pugh, Cor.3.2.30)

= log(x) + ∫
y

1

1

t̃
⋅ 1 dt̃ (substituting u(t) ∶= t)

= log(x) + log(y).

(b) Prove that if x ∈ (0,∞) and n is an integer then log(xn) = n log(x).

Proof. (By the hint:) if n > 0 then setting y ∶= x from (a) and using it inductively proves the claim.
If n = 0, by definition

log(x0) = log(1) = ∫
1

1

1

t̃
dt̃ = 0 = 0x.

If n < 0, consider log(xnx−n) = log(1) = 0, while (a) suggests that

0 = log(xnx−n) = log(xn) + log(x−n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−n log(x)

Ô⇒ log(xn) = n log(x) for n < 0 as well.

(c) Prove that log ∶ (0,∞)→ (−∞,∞) is surjective.

Proof. (By the hint:) first notice that log(2) = ∫
2

1

1

t̃
dt̃ ⩾ ∫

2

1

1

2
dt̃ = (2 − 1) ⋅ 1

2
= 1

2
. Therefore by

(b), if n > 0, we have
log(2n) (b)= n∫

2

1

1

t̃
dt̃ ⩾ n

2
.

Letting n→∞ we see that log(2n)→∞, and so log is unbounded from above. From (b) we also know
that log(2n2−n) = 0 = log(2n) + log(2−n) so, for n > 0, log(2−n) = − log(2n). Therefore as n → ∞ we
have log(2−n)→ −∞ and so log is unbounded from below as well.
Now, it remains to notice that, by FTC (part I), since 1/t̃ is continuous everywhere for t ≠ 0, in
particular t > 0, the log function is continuous on (0,∞). Since anything of form log(2n) or log(2−n)
are on this domain, by IMT it follows that the image of log is unbounded both from below and above,
and it surjects onto R.
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Definition

Let exp =∶ (−∞,∞)→ (0,∞) be the inverse function to log. Let e ∶= exp(1) and, for real numbers
a, b with a > 0, define

ab ∶= exp(b log(a)).

(d) Prove that exp(x) = ex for all x ∈ R.

Proof. (By the hint:) By definition, since e = exp(1) > 0, ex = exp(x log(e)) = exp(x ⋅ log exp(1)) =
exp(x).

(e) Prove that if p and q are integers with q ≠ 0 and x ∈ (0,∞), then

exp((p/q) log(x))

is the unique y ∈ (0,∞) with yq = xp.

Proof. (By the hint:) since f(x̃) = x̃q is continuous and monotone on (0,∞), IMT and MVT
suggests the existence and uniqueness of solution of y to yq = xp. Therefore it suffices to show the
above expression is a solution. Indeed,

[exp((p/q) log(x))]q = exp [q ⋅ log exp[(p/q) log(x)]] (definition of exp)

= exp [q ⋅ (p/q) log(x)]

= exp [p log(x)] = exp log(xp) = xp.

(f) For a ∈ (1,∞) and b ∈ (0,∞), define
loga(b) ∶=

log(b)
log(a)

.

Prove that we have aloga(b) = b so that this is a valid definition of base-a logarithms.

Proof. (By the hint:) expanding aloga(b) using the definition, we have

aloga(b) = exp [loga(b) log(a)] = exp [
log(b)
log(a)

log(a)] = exp log(b) = b.

(g) Prove that the harmonic series
∞
∑
k=1

1

k
diverges.

Proof. (By the hint:) we consider the integral test between
∞
∑
k=1

1

k
and ∫

∞

1

1

t̃
dt̃. Notice that we can

treat
∞
∑
k=1

1

k
as ∫

∞

1

1

⌊t̃⌋
dt̃ which dominates ∫

∞

1

1

t̃
dt̃ since the floor function ⌊t̃⌋ ⩽ t. However, we also

know

∫
∞

1

1

t̃
dt̃ = lim

n→∞∫
n

1

1

t̃
dt̃ = lim

n→∞
log(n)→∞

as log surjects onto R. Therefore the harmonic series diverges.
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