

MATH 425b Problem Set 2

Qilin Ye

January 28, 2021

Cauchy Nets

(1) This sub-problem defines Cauchy nets and shows some of its properties.

Definition

Let (A, \leq) be a directed set and let (X, d) be a metric space. A net $f : A \rightarrow X$ is **Cauchy** if, for all $\epsilon > 0$, there exists $a_0 \in A$ such that for all $a_1, a_2 \in A$ with $a_0 \leq a_1$ and $a_0 \leq a_2$, we have

$$d(f(a_1), f(a_2)) < \epsilon.$$

(a) Prove that every convergent net in (X, d) is Cauchy.

Proof. Let $f : A \rightarrow X$ be a convergent net with $\lim f = L$. Let $\epsilon > 0$ be given. We want to show that there exists $a_0 \in A$ such that if $a_0 \leq a_1, a_2$ then $d(f(a_1), f(a_2)) < \epsilon$.

Indeed, by convergence of f , there exists $a'_0 \in A$ such that $d(f(\tilde{a}), L) < \epsilon/2$ for all $\tilde{a} \in A$ satisfying $a'_0 \leq \tilde{a}$. It follows that, for all a_1, a_2 with $a'_0 \leq a_1$ and $a'_0 \leq a_2$, we have

$$d(f(a_1), f(a_2)) \leq d(f(a_1), L) + d(L, f(a_2)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

and the claim follows. \square

(b) Assuming (X, d) is complete, prove that every Cauchy net in (X, d) converges.

Proof. Let $f : A \rightarrow X$ be a Cauchy net. We will construct a sequence $\{x_n\}_{n \geq 1}$ according to the hint and show f is convergent.

Since f is Cauchy, there exists $a_1 \in A$ such that if $a_1 \leq a, b$ we have $d(f(a), f(b)) < 1$. Define $x_1 := a_1$.

Now pick $a_2 \in A$ such that $a_1 \leq a_2$ and $(a_2 \leq a, b \in A \implies d(f(a), f(b)) < 1/2)$. (This is obviously possible if we drop the condition $a_1 \leq a_2$, and if this binary relation is not automatically fulfilled, i.e., $a_1 \not\leq a_2$, we simply need to use the existence of an upper bound and set it as our new a_2 .) Inductively, we may define $a_n \in A$ such that $a_{n-1} \leq a_n$ and $(a_n \leq a, b \in A \implies d(f(a), f(b)) < 1/n)$. Now consider the sequence $\{x_n\}_{n \geq 1} := \{f(a_n)\}_{n \geq 1}$.

First observation: $\{x_n\}$ converges in X . Indeed, for any given $\epsilon > 0$, for sufficiently large $N \in \mathbb{N}$ with $1/N < \epsilon$, we have $(n, m \geq N \implies d(x_n, x_m) < 1/N < \epsilon)$, i.e., it is first Cauchy. Therefore, by the

completeness of X we know it converges to some $L \in X$. With this convergence, now we shall show f converges to L as well.

Again let $\epsilon > 0$ be given. Since $\{x_n\}$ converges there exists $N_1 \in \mathbb{N}$ with $d(x_n, L) < \epsilon/2$. On the other hand, there exists $N_2 \in \mathbb{N}$ such that $1/m < \epsilon/2$. Then $(a_{N_2} \leq a, b \in A \implies d(f(a) - f(b)) < \epsilon/2)$. Now we define $N := \max\{N_1, N_2\}$. It follows that, for all $a \in A$ with $a_N \leq a$,

$$d(f(a) - L) \leq d(f(a) - f(a_N)) + d(f(a_N) - L) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

from which the claim of convergence of the Cauchy net follows. \square

(c) Let f be a real- (or complex-)valued function on $[1, \infty)$ such that the improper Riemann integral $\int_1^\infty |f(x)| dx$ exists. Prove that $\int_1^\infty f(x) dx$ exists.

Proof. According to the hint, we consider the directed set $(A, \leq) := ([1, \infty), \leq)$ and nets $\mathfrak{F}, \bar{\mathfrak{F}}$, both from A to \mathbb{R} , defined by

$$\mathfrak{F} : a \mapsto \int_1^a f(x) dx \quad \text{and} \quad \bar{\mathfrak{F}} : a \mapsto \int_1^a |f(x)| dx.$$

Let $\epsilon > 0$ be given. By assumption, $\int_1^\infty |f(x)| dx$ exists, so $\bar{\mathfrak{F}}$ converges and is in particular Cauchy. Therefore, there exists $c \in \mathbb{R}$ such that if $a > b > c$,

$$|\bar{\mathfrak{F}}(b) - \bar{\mathfrak{F}}(a)| = \int_a^b |f(x)| dx < \epsilon.$$

Now we want to show that \mathfrak{F} is convergent. By the completeness of \mathbb{R} and results from previous parts it suffices to show that it is Cauchy. Indeed, notice that, for $b > a > c$,

$$|\mathfrak{F}(b) - \mathfrak{F}(a)| = \left| \int_1^b f(x) dx - \int_1^a f(x) dx \right| = \left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx < \epsilon.$$

Therefore \mathfrak{F} is Cauchy and our claim follows. \square

Pugh, Ex.1.45, \limsup & \liminf

(2) Complete Pugh, Exercise 1.45.

Definition

Let $\{a_n\}_{n \geq 1}$ be a sequence of real numbers. It is bounded if the set $A := \{a_1, a_2, \dots\}$ is bounded. The **limit supremum**, or \limsup , of a bounded sequence $\{a_n\}$ as $n \rightarrow \infty$ is

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \left(\sup_{k \geq n} a_k \right).$$

(a) Why does the \limsup exist?

Solution

The \limsup exists because of the G.L.B. (greatest lower bound) property stated back in Chapter 1. Notice that, if $n_1 \leq n_2$, $\sup_{k \geq n_1} a_k \geq \sup_{k \geq n_2} a_k$ (since $n_2 \geq n_1$ means we are taking the supremum of fewer terms of the sequence). Hence the sequence $\{s_n\}_{n \geq 1}$ defined by $s_n := \sup_{k \geq n} a_k$ is monotone decreasing. But since $\{a_n\}$ is bounded by, say $[-M, M]$, $\{s_n\}$ is also bounded below by $-M$. Therefore $\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} s_n$ exists.

(b) If $\sup\{a_n\} = \infty$, how should we define $\limsup_{n \rightarrow \infty} a_n$? Simply ∞ .

(c) If $\lim_{n \rightarrow \infty} a_n = -\infty$, how should we define $\limsup_{n \rightarrow \infty} a_n$? Simply $-\infty$.

(d) When is it true that

$$\limsup_{n \rightarrow \infty} (a_n + b_n) \leq \limsup_{n \rightarrow \infty} a_n + \limsup_{n \rightarrow \infty} b_n$$

$$\limsup_{n \rightarrow \infty} c(a_n) = c \limsup_{n \rightarrow \infty} a_n?$$

Solution

Always (assuming we are only looking at bounded sequences). For the first one, since \sup of a set is no less than the \sup of its subset:

$$\sup_{k \geq n} (a_k + b_k) \leq \sup_{\substack{j \geq n \\ k \geq n}} (a_j + b_k) = \sup_{j \geq n} a_j + \sup_{k \geq n} b_k.$$

As n increases we see $\sup_{k \geq n} (a_k + b_k)$ is non-increasing and bounded below, it makes sense to take $\lim_{n \rightarrow \infty}$ on both sides, which gives

$$\limsup_{n \rightarrow \infty} (a_n + b_n) \leq \limsup_{n \rightarrow \infty} a_n + \limsup_{n \rightarrow \infty} b_n.$$

Remark. For unbounded sequences, if the RHS is not of form $\infty - \infty$, the \leq also holds. However, “=” does not always hold: consider $\{a_n\}_{n \geq 1} := \{(-1)^n n\}$ and $\{b_n\}_{n \geq 1} := \{-a_n\}$. They both have $\limsup +\infty$ but their sum is the constant sequence 0.

For the second one, if $c \geq 0$, the claim follows from the fact that if a sequence $\{x_n\} \rightarrow x$ then $\{cx_n\} \rightarrow cx$. Otherwise, if $c < 0$, since $\limsup_{n \rightarrow \infty} -|c|a_n = -\liminf_{n \rightarrow \infty} |c|a_n = -|c| \liminf_{n \rightarrow \infty} a_n$, we need

$$-|c| \liminf_{n \rightarrow \infty} a_n = c \liminf_{n \rightarrow \infty} a_n = c \limsup_{n \rightarrow \infty} a_n$$

for the original equality to hold. Visualizing such sequences? Think of a sequence with two horizontal lines equidistant to the x -axis (on different sides, of course) as its “asymptotes”. (Well, we haven’t defined \liminf yet...)

(e) Define the **limit infimum** (\liminf) of a real sequence, and find a formula relating it to \liminf .

Solution

Similar to \limsup , for a bounded sequence $\{a_n\}_{n \geq 1}$ we define $\liminf_{n \rightarrow \infty} a_n := \lim_{n \rightarrow \infty} \left(\inf_{k \geq n} a_k \right)$.

In extreme cases:

$$\liminf_{n \rightarrow \infty} := \begin{cases} +\infty & \text{if } \lim_{n \rightarrow \infty} a_n = \infty, \text{ and} \\ -\infty & \text{if } \inf\{a_n\} = -\infty. \end{cases}$$

A formula that connects \liminf to \limsup :

$$\limsup_{n \rightarrow \infty} (-a_n) = -\liminf_{n \rightarrow \infty} (a_n).$$

(f) Prove that $\lim_{n \rightarrow \infty} a_n$ exists if and only if the sequence $\{a_n\}$ is bounded and $\liminf_{n \rightarrow \infty} a_n = \limsup_{n \rightarrow \infty} a_n$.

Proof. \implies : suppose $\lim_{n \rightarrow \infty} a_n = L$. We immediately know $\{a_n\}$ is bounded. To show the other equality, we can show that two sides differ by $< \epsilon$ for all $\epsilon > 0$. Since $\{a_n\}$ converges, there exists $N \in \mathbb{N}$ such that $|a_m - L| < \epsilon/4$ for all $m \geq N$. Then, taking supremum and infimum on m suggests that the difference is at most $\epsilon/4$ (i.e., $\leq \epsilon/4$). Therefore,

$$\sup_{k \geq N} a_k - \inf_{k \geq N} a_k = \left| \sup_{k \geq N} a_k - L \right| + \left| \inf_{k \geq N} a_k - L \right| \leq \frac{\epsilon}{2} < \epsilon.$$

Recall that $\{s_n\} := \{\sup_{k \geq n} a_k\}$ form a monotone decreasing sequence and the sequence of infimums form a monotone increasing sequence. Therefore $\{\Delta_n\} := \{\sup_{k \geq n} a_k - \inf_{k \geq n} a_k\}$ is also monotone decreasing, so

all terms after Δ_n all $< \epsilon$. Since ϵ is arbitrary we conclude that $\Delta_n \rightarrow 0$. Hence " \implies " follows.

\impliedby : suppose $\{a_n\}$ is bounded and its \liminf and \limsup agree, and we define this value to be L . Suppose, for contradiction, that the sequence does *not* converge. Then for some $\epsilon > 0$, there exists a subsequence $\{a_{n_i}\}$ such that $|a_{n_i} - L| \geq \epsilon$ for all n_i . WLOG assume infinitely many terms of $\{a_{n_i}\}$ are greater than L , in particular $> L + \epsilon$. Immediately we see that $\limsup_{n \rightarrow \infty} a_n \geq L + \epsilon$ (since any sequence of form (x_n, x_{n+1}, \dots) contains some element of $\{a_{n_i}\}$ and so the its supremum is at least $L + \epsilon$), a contradiction. Therefore $\{a_n\}$ must converge and converge precisely to L . \square

Logarithm and Exponential Functions Done Rigorously

(3) This problem explores the properties of the logarithm and exponential functions as rigorously defined using

$$\log(x) = \int_1^x \frac{1}{t} dt.$$

Theorem: a slight generalization of integration by substitution

Let u be a diffeomorphism from a compact interval I to a compact interval J with u' Riemann integrable, and suppose I has endpoints $\{a, b\}$. Let f be Riemann integrable on J . Then

$$\int_a^b f(u(\tilde{x}))u'(\tilde{x}) \, d\tilde{x} = \int_{u(a)}^{u(b)} f(\tilde{u}) \, d\tilde{u}.$$

(a) Prove that if $x, y \in (0, \infty)$ then $\log(xy) = \log(x) + \log(y)$.

Proof. (By the hint:)

$$\begin{aligned} \log(xy) &= \int_1^{xy} \frac{1}{\tilde{t}} \, d\tilde{t} = \int_1^x \frac{1}{\tilde{t}} \, d\tilde{t} + \int_x^{xy} \frac{1}{\tilde{t}} \, d\tilde{t} && \text{(Pugh, Cor.3.2.30)} \\ &= \log(x) + \int_1^y \frac{1}{\tilde{t}} \cdot 1 \, d\tilde{t} && \text{(substituting } u(t) := t\text{)} \\ &= \log(x) + \log(y). \end{aligned}$$

□

(b) Prove that if $x \in (0, \infty)$ and n is an integer then $\log(x^n) = n \log(x)$.

Proof. (By the hint:) if $n > 0$ then setting $y := x$ from (a) and using it inductively proves the claim.

If $n = 0$, by definition

$$\log(x^0) = \log(1) = \int_1^1 \frac{1}{\tilde{t}} \, d\tilde{t} = 0 = 0x.$$

If $n < 0$, consider $\log(x^n x^{-n}) = \log(1) = 0$, while (a) suggests that

$$0 = \log(x^n x^{-n}) = \log(x^n) + \underbrace{\log(x^{-n})}_{-n \log(x)} \implies \log(x^n) = n \log(x) \text{ for } n < 0 \text{ as well.}$$

□

(c) Prove that $\log : (0, \infty) \rightarrow (-\infty, \infty)$ is surjective.

Proof. (By the hint:) first notice that $\log(2) = \int_1^2 \frac{1}{\tilde{t}} \, d\tilde{t} \geq \int_1^2 \frac{1}{2} \, d\tilde{t} = (2-1) \cdot \frac{1}{2} = \frac{1}{2}$. Therefore by (b), if $n > 0$, we have

$$\log(2^n) \stackrel{(b)}{=} n \int_1^2 \frac{1}{\tilde{t}} \, d\tilde{t} \geq \frac{n}{2}.$$

Letting $n \rightarrow \infty$ we see that $\log(2^n) \rightarrow \infty$, and so \log is unbounded from above. From (b) we also know that $\log(2^n 2^{-n}) = 0 = \log(2^n) + \log(2^{-n})$ so, for $n > 0$, $\log(2^{-n}) = -\log(2^n)$. Therefore as $n \rightarrow \infty$ we have $\log(2^{-n}) \rightarrow -\infty$ and so \log is unbounded from below as well.

Now, it remains to notice that, by FTC (part I), since $1/\tilde{t}$ is continuous everywhere for $t \neq 0$, in particular $t > 0$, the \log function is continuous on $(0, \infty)$. Since anything of form $\log(2^n)$ or $\log(2^{-n})$ are on this domain, by IMT it follows that the image of \log is unbounded both from below and above, and it surjects onto \mathbb{R} .

□

Definition

Let $\exp =: (-\infty, \infty) \rightarrow (0, \infty)$ be the inverse function to \log . Let $e := \exp(1)$ and, for real numbers a, b with $a > 0$, define

$$a^b := \exp(b \log(a)).$$

(d) Prove that $\exp(x) = e^x$ for all $x \in \mathbb{R}$.

Proof. (By the hint:) By definition, since $e = \exp(1) > 0$, $e^x = \exp(x \log(e)) = \exp(x \cdot \log \exp(1)) = \exp(x)$. \square

(e) Prove that if p and q are integers with $q \neq 0$ and $x \in (0, \infty)$, then

$$\exp((p/q) \log(x))$$

is the unique $y \in (0, \infty)$ with $y^q = x^p$.

Proof. (By the hint:) since $f(\tilde{x}) = \tilde{x}^q$ is continuous and monotone on $(0, \infty)$, IMT and MVT suggests the existence and uniqueness of solution of y to $y^q = x^p$. Therefore it suffices to show the above expression is a solution. Indeed,

$$\begin{aligned} [\exp((p/q) \log(x))]^q &= \exp[q \cdot \log \exp((p/q) \log(x))] && \text{(definition of exp)} \\ &= \exp[q \cdot (p/q) \log(x)] \\ &= \exp[p \log(x)] = \exp \log(x^p) = x^p. \end{aligned}$$

\square

(f) For $a \in (1, \infty)$ and $b \in (0, \infty)$, define

$$\log_a(b) := \frac{\log(b)}{\log(a)}.$$

Prove that we have $a^{\log_a(b)} = b$ so that this is a valid definition of base- a logarithms.

Proof. (By the hint:) expanding $a^{\log_a(b)}$ using the definition, we have

$$a^{\log_a(b)} = \exp[\log_a(b) \log(a)] = \exp\left[\frac{\log(b)}{\log(a)} \log(a)\right] = \exp \log(b) = b.$$

\square

(g) Prove that the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.

Proof. (By the hint:) we consider the integral test between $\sum_{k=1}^{\infty} \frac{1}{k}$ and $\int_1^{\infty} \frac{1}{\tilde{t}} d\tilde{t}$. Notice that we can treat $\sum_{k=1}^{\infty} \frac{1}{k}$ as $\int_1^{\infty} \frac{1}{[\tilde{t}]} d\tilde{t}$ which dominates $\int_1^{\infty} \frac{1}{\tilde{t}} d\tilde{t}$ since the floor function $[\tilde{t}] \leq \tilde{t}$. However, we also know

$$\int_1^{\infty} \frac{1}{\tilde{t}} d\tilde{t} = \lim_{n \rightarrow \infty} \int_1^n \frac{1}{\tilde{t}} d\tilde{t} = \lim_{n \rightarrow \infty} \log(n) \rightarrow \infty$$

as \log surjects onto \mathbb{R} . Therefore the harmonic series diverges. \square