
HOMEWORK, WEEK 3

This assignment is due Friday, February 5 in lecture. Handwritten solutions are acceptable
but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1) Pugh, Exercise 3.69. This exercise shows that you can rearrange the terms of an
absolutely convergent series without affecting convergence or the sum. For part (a),
note that given ε > 0, you can ensure that the terms aN+1, aN+2, . . . contribute less
than ε to the sum. Show that you can choose N ′ large enough that all N of the terms
a1, . . . , aN appear as terms aβ(1), . . . , aβ(N ′). Using similar arguments, show that no
partial sum of the rearranged series can be larger than the sum of the original infinite
series. For part (b), note that the series of absolute values of a rearrangement is a
rearrangement of the original series of absolute values.

(2) Let
∑∞

k=0 ck(x − x0)
k be a real or complex power series with radius of convergence

R. In this problem you will show that the radius of convergence of the term-by-
term differentiated series

∑∞
k=1 kck(x−x0)

k−1 and the term-by-term integrated series∑∞
k=0

ck
k+1

(x−x0)
k+1 are also R; this is part of the proof of Theorem 4.12 in the book,

but here you’ll fill in the details. This is an important proof in both real and complex
analysis.

(a) Suppose an, bn are sequences of real numbers with an ≥ 0 and bn ≥ 0 for all n.
Show that sup anbn ≤ sup an sup bn, as long as the right side of the inequality is
not an indeterminate form 0×∞ or ∞× 0.

Hint : For a fixed n, show that anbn is less than or equal to the product of
suprema (which is well-defined by assumption).

(b) Suppose an, bn are sequences of real numbers with an ≥ 0 and bn ≥ 0 for all n.
Show that

lim sup anbn ≤ lim sup an lim sup bn,

as long as the right side of the inequality is not an indeterminate form 0×∞ or
∞× 0.

Hint: Use the definition of lim sup as the limit of a supremum on the left side.
Use the previous problem (show that the assumptions are satisfied), then use
that the limit of a product sequence is the product of limits (you can assume that
this holds under the given assumptions; the finite cases follow from continuity
of the multiplication map from R2 to R).

(c) Suppose an, bn are sequences of real numbers with an ≥ 0 and bn ≥ 0 for all
n. Assume that limn→∞ an = A with 0 < A < ∞, and write B = lim sup bn ∈
[0,∞]. Show that

lim sup anbn = AB.

Hint: Since you have lim sup an = lim an whenever the limit exists, the previous
problem gives you lim sup anbn ≤ AB. To show the reverse inequality, consider
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two cases. When B < ∞, show that for all ε > 0, you have lim sup anbn ≥
(A− ε)B. To do this, given ε, use the convergence of an to A to bound an below
by A− ε for large enough n.

When B = ∞, the proof is similar but a bit simpler. It suffices to show that
lim sup anbn ≥ M for all M . Given a fixed M , use convergence of an to A to
bound an below by some fixed positive number (say A/2) for all large n, then
choose a large n′ such that bn′ ≥ 2M/A.

(d) Show that limk→∞ k1/k = 1 and limk→∞( 1
k+1

)1/k = 1.

Hint : Write k1/k as e(1/k) log(k), and try to evaluate the limit of the exponent.
For the second limit, you can argue similarly; what does log( 1

k+1
) equal?

(e) Show that

lim sup k
√

k|ck| = lim sup k
√
|ck| = lim sup

k

√
|ck|
k + 1

.

Hint : Write (k|ck|)1/k as k1/k|ck|1/k and use the previous problems; the second
equality is similar.

(f) Show that the differentiated series
∞∑
k=1

kck(x− x0)
k−1

and the integrated series
∞∑
k=0

ck
k + 1

(x− x0)
k+1

have the same radius of convergence R as the original series
∑∞

k=0 ck(x− x0)
k.

Hint : The book’s proof in Theorem 4.12 features a complicated lim sup of an
exponential, which you can avoid as follows: first show that

∑∞
k=1 kck(x−x0)

k−1

and
∑∞

k=1 kck(x − x0)
k have the same radius of convergence. Show the same

thing for
∑∞

k=0
ck
k+1

(x − x0)
k+1 and

∑∞
k=0

ck
k+1

(x − x0)
k. Then use the previous

problem to finish your proof.


