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Pugh, Ex.3.69

Consider a series
∞

∑
k=1

ak and rearrange its terms by some bijection β ∶ N→ N, forming a new series
∞

∑
k=1

aβ(k).

(a) Prove that every rearrangement of a convergent series of nonnegative terms converges and converges to the

same sum as the original series.

Proof. Let ε > 0 be given. By CCC there exists N ∈ N such that
∞

∑
k=N+1

ak < ε. Notice that {a1, . . . , aN} gets

mapped to {aβ(1), . . . , aβ(N)} under the rearrangement. DefineN ′ ∶=max
n⩽N

β(n). This is well-defined sinceN

is finite. It follows that N ′ ⩾ N , so {aN ′+1, aN ′+2, . . .} ⊂ {aN+1, aN+2, . . .}. Therefore,
∞

∑
k=N ′

+1

aβ(k) ⩽
∞

∑
k=N+1

ak < ε,

and this shows precisely the convergence of
∞

∑
k=1

aβ(k) according to CCC.

From above we see that the rearranged series can have partial sums arbitrarily close to the original sum

from below. Therefore it suffices to show that no rearranged partial sum exceeds the original limit. Indeed,

for all n′ ∈ N, there exists a sufficiently large n ∈ N such that {β(1), . . . , β(n′)} ⊂ {1,2, . . . , n}. Since ak’s

are all nonnegative,
n′

∑
k=1

aβ(k) ⩽
n

∑
k=1

ak ⩽
∞

∑
k=1

ak, and our claim follows.

(b) Do the same for absolutely convergent series.

Proof. This is already given by the hint... The series of absolute values of a rearrangement is the rear-

rangement of the original series of absolute values, so if the original series is absolutely convergent, so is

the rearranged series.

Term-by-Term Differentiation & Integration of Power Series

Let
∞

∑
k=0

ck(x − x0)k be a real or complex power series with radius of convergence R. This problem shows that the

radii of convergence of the term-by-term differentiated series and of the term-by-term integrated series are also R.

(a) Suppose {an},{bn} are sequences of real, nonnegative numbers. Show that sup anbn ⩽ sup an sup bn as long as

the RHS is not an indeterminate form 0×∞ or ∞× 0. Immediate since supanbn = sup
n⩾1

anbn ⩽ sup
n⩾1

an sup
m⩾1

bm.
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(b) Suppose an, bn are sequences of real, nonnegative numbers. Show that

lim supanbn ⩽ lim supan lim sup bn

as long as the RHS is not an indeterminate form 0 ×∞ or ∞× 0.

Proof. We simply need to apply lim
n→∞

to (a):

lim supanbn = lim
n→∞

(sup
k⩾n

akbk) ⩽ lim
n→∞

(sup
k⩾n

ak sup
j⩾n

bj)

= lim
n→∞

(sup
k⩾n

ak) lim
n→∞

(sup
j⩾n

bj)

= lim supan lim sup bn.

(c) Further assume that lim
n→∞

an = A ∈ (0,∞) and lim sup
n→∞

bn = B ∈ [0,∞]. Show that

lim supanbn = AB.

Proof. Since the convergence of an implies lim sup
n→∞

an = lim
n→∞

an = A, by (b) we already have ⩽. It remains

to show ⩾.
By the convergence of an, for all ε > 0 there exists N ∈ N such that

n ⩾ N Ô⇒ an ⩾ A − ε.

Hence if m ⩾ N we have sup
k⩾m

akbk ⩾ sup
k⩾m

(A − ε)bk = (A − ε) sup
k⩾m

bk. Taking m→∞ gives

lim sup
m→∞

ambm ⩾ (A − ε) lim sup
m→∞

bm = (A − ε)B.

Since ε is arbitrary, we indeed have lim sup anbn ⩾ AB and thus lim sup anbn = AB.

(d) Show that lim
k→∞

k1/k = 1 and lim
k→∞

(1/(k + 1))1/k = 1.

Proof. Writing k1/k as exp((1/k) log(k)) we have

lim
k→∞

log(k)
k

(H)== lim
k→∞

1/k
1

= 0

and so lim
k→∞

exp((1/k) log(k)) = e0 = 1 (since exp is continuous).

Similarly, since

( 1

k + 1
)
1/k

= exp(1
k
log ( 1

k + 1
)) = exp(1

k
[ log(1)
´¹¹¹¹¹¹¸¹¹¹¹¹¶

=0

− log(k + 1)]),

taking k →∞ we see that

lim
k→∞

− log(k + 1)
k

(H)== lim
k→∞

− 1

k + 1
= 0,

and again limk→∞(1/(k + 1))1/k = e0 = 1.

(e) Show that

lim sup
k→∞

k
√
k∣ck ∣ = lim sup

k→∞

k
√

∣ck ∣ = lim sup
k→∞

k

√
∣ck ∣
k + 1

.
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Proof. Using (c) and (d), we have

lim sup
k→∞

k
√

∣ck ∣ = lim sup
k→∞

k1/k ∣ck ∣1/k

= lim sup
k→∞

k1/k lim sup
k→∞

∣ck ∣1/k (by (c))

= lim sup
k→∞

∣ck ∣1/k, (by (d))

and

lim sup
k→∞

k

√
∣ck ∣
k + 1

= lim sup
k→∞

( 1

k + 1
)
1/k

∣ck ∣1/k

= lim sup
k→∞

( 1

k + 1
)
1/k

lim sup
k→∞

∣ck ∣1/k (by (c))

= lim sup
k→∞

∣ck ∣1/k. (by (d))

(f) Show that the differentiated series
∞

∑
k=1

kck(x − x0)k−1 and the integrated series
∞

∑
k=0

ck
k + 1

(x − x0)k+1 both have

radius of convergence R as the original series
∞

∑
k=0

ck(x − x0)k.

Proof. For the first one, note that
∞

∑
k=1

kck(x − x0)k−1 can be rewritten as
∞

∑
k=0

(k + 1)ck+1(x − x0)k. Then,

lim sup
k→∞

k+1
√

∣(k + 1)ck+1∣ = lim sup
k→∞

k+1
√

(k + 1) lim sup
k→∞

k+1
√

∣ck+1∣

= lim sup
k→∞

k1/k lim sup
k→∞

∣ck ∣1/k

= lim sup
k→∞

∣ck ∣1/k.

Therefore the differentiated series has radius of convergence R. Similarly, notice that

lim sup
k→∞

k

√
ck
k + 1

= lim sup
k+1→∞

k+1

√
ck+1
k + 2

.

Hence
∞

∑
k=0

ck
x + 1

(x−x0)k+1 and
∞

∑
k=0

ck+1
k + 2

(x−x0)k+1 =
∞

∑
k=1

ck
k + 1

(x−x0)k have the same radius of convergence.

The main claim follows since the latter has the same radius of convergence as the original one by (e).
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