
HOMEWORK, WEEK 4

This assignment is due Friday, February 12 in lecture. Handwritten solutions are accept-
able but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1) Pugh, Exercise 4.4(b). This exercise investigates whether uniform continuity is pre-
served by uniform convergence; you only need to do part (b), because part (a) follows
as a special case.

Hint : The answer is “yes,” uniform convergence preserves uniform continuity, even
in the setting of arbitrary metric spaces. The proof is a simple variation of the ε/3
proof from Friday’s lecture that a uniform limit of continuous functions is continuous
(Theorem 1 in Section 4.1 of Pugh).

(2) Prove the following result about uniform convergence.

Theorem (Dini’s theorem). Let X be a compact metric space and let fn : X → R be
a sequence of continuous functions. Assume that the functions fn converge pointwise
to f : X → R, that f is continuous, and that for all x ∈ R, the sequence (fn(x))∞n=1 is
a decreasing sequence of real numbers (the same result would hold if these sequences
were always increasing). Then fn converges uniformly to f .

Hint : Note that you have fn(x) ≥ f(x) for all x. Given ε > 0, you want to find N
such for n ≥ N , you have fn(x) − f(x) < ε for all x ∈ X. For each n, you have an
open (why?) subset Un of X consisting of points where this inequality is satisfied;
you want to show that some Un is equal to all of X.

To do this, first show that the Un cover X; you should be able to do this using
pointwise convergence of the fn to f . Since X is compact, you can extract a finite
subcover. Finally, show that for n < n′ we have Un ⊂ Un′ using the decreasing
property assumed in the statement. From there, you should be able to find Un with
Un = X, i.e. fn(x)− f(x) < ε for all x ∈ X, proving uniform convergence.

(3) Let A be a directed set. Consider a sequence fn(a) of nets from A to a metric space
Y . Assume that:
• For each fixed n, the net fn(a) converges to a limit Ln in Y .
• The nets fn converge uniformly (as a sequence of functions A→ Y ) to some net
f : A→ Y .

(a) Prove that the limits (Ln)∞n=1 form a Cauchy sequence in Y .

Hint : This is a more elaborate version of the “ε/3” argument. Given ε > 0,
you want N such that d(Ln, Lm) < ε for all n,m ≥ N . Choose N such that for
n,m ≥ N , we have d(fn(a), fm(a)) < ε/3 for all a ∈ A (why is this possible?).

You want to show that if n,m ≥ N where N was chosen above, then d(Ln, Lm) <
ε. To do this, consider fixed integers n,m ≥ N . Use the assumptions lim fn = Ln

and lim fm = Lm to find a0 such that d(fn(a), Ln) < ε/3 and d(fm(a), Lm) < ε/3
1



2 HOMEWORK, WEEK 4

for all a0 � a (which directed set axiom are you using?). Then use the triangle
inequality as in the usual ε/3 argument.

(b) Now assume that the sequence (Ln)∞n=1 converges to some limit L ∈ Y (for
example, this will always hold if Y is complete, by the previous part). Prove
that the limit of f (as a net from A to Y ) exists and equals L.

Hint : To build an argument like this, one way is to work backwards from the
triangle inequality. Given ε > 0, the inequality you want is d(f(a), L) < ε (for
all a0 � a, some a0), so you want a chain of controllable quantities connecting
f(a) and L. What you know about L is that it’s the limit of the sequence
(Ln), so you’re expecting to at least use d(f(a), L) ≤ d(f(a), Ln) + d(Ln, L).
The quantity d(Ln, L) is independent of a; you can make it small by choosing a
(fixed) n that’s large enough.

For this fixed n, you also want to control d(f(a), Ln), and it’s reasonable to try
d(f(a), Ln) ≤ d(f(a), fn(a)) +d(fn(a), Ln). Since n is fixed, the second quantity
is controlled for a0 � a (for some a0). For the first quantity, you might worry
that the convergence of fn to f depended on the point a, so that your choice of
n here would depend on your choice of a (which in turn depended on your fixed
n above). This would indeed be a problem if fn only converged pointwise to f ,
but luckily you have uniform convergence, so everything is fine.

Now go back and rearrange this reasoning in the logically correct order, which
may involve moving some things around. Given ε, the logical dependence is that
N should depend on ε, and then a0 should depend on N . So you want to choose
N , satisfying all the conditions it’ll eventually need to satisfy, first. Once this N
is chosen, then you choose a0, satisfying all the things it needs to satisfy. Then
given a0 � a, use the triangle inequality and assumptions to prove what you
want. (Note that you don’t need to consider n ≥ N ; you can just work with fN
and LN .)

(c) Use the above part to give an alternate proof that if X and Y are metric spaces
and fn : X → Y are continuous at x ∈ X and converge uniformly to f : X → Y ,
then f is continuous at x.

Hint : The idea is that “uniform convergence preserves limits” should imply “uni-
form convergence preserves continuity.” For x ∈ X, there are two possibilities.
First, if x is an isolated point (i.e. x /∈ X \ {x}, i.e. {x} is an open subset of
X), show that any function f : X → Y is continuous at x.

The second possibility is that x is a non-isolated point. In this case, consider
the directed set A = X \ {x} with ordering relation a � a′ if |a′ − x| ≤ |a− x|.
Each function fn can be restricted to a function from A = X \ {x} to Y , i.e. a
net from A to Y .

Assuming x is a non-isolated point (i.e. x ∈ X \ {x}), first show that a function
g : X → Y is continuous at x ∈ X if and only if the restriction of g to A =
X \ {x}, viewed as a net from A to Y , converges (as a net) to g(x). Then
you know that the limit of fn (as a net A → Y ) exists and equals fn(x). Why
does the sequence (fn(x))∞n=1 converge, and what is its limit? Conclude by the
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above part that the limit of f (as a net A→ Y ) exists and equals f(x), so f is
continuous at x.

Remark. It’s true that the direct ε/3 argument we saw in class is much shorter
than the above alternate proof that uniform convergence preserves continuity.
It’s still of conceptual interest, though. In calculus, limits are often presented as
the fundamental concept from which continuity, derivatives, etc. can be defined
(this approach runs into difficulties with Riemann integrals unless you generalize
the meaning of “limit,” for example by using nets). Based on this perspective, it’s
natural to ask whether you can first prove that “uniform convergence preserves
limits of nets” (an informal statement of Problem 2b), and then deduce results
on uniform convergence and many different calculus constructions. The answer
is yes in general; the next problem gives another example.

(d) Use part (3b) to give an alternate proof that if [a, b] is a closed interval in R
and fn : [a, b] → R are Riemann integrable functions converging uniformly to
f : [a, b]→ R, then f is Riemann integrable.

Hint : Let A be the set of tagged partitions (P, T ) of [a, b] with the refinement
ordering � that was discussed in HW 1. By that homework, you know that
Riemann integrability of a function g : [a, b]→ R is equivalent to convergence of
the net (P, T ) 7→ R(g, P, T ) (a net from A to R).

You want to show that the nets (P, T ) 7→ R(fn, P, T ) converge uniformly in
(P, T ) (as n → ∞) to the net (P, T ) 7→ R(f, P, T ). Since R is complete, the
result will then follow from the first two parts of the problem.

To prove this uniform convergence of nets, let ε > 0 be given. You want N such
that for n ≥ N , we have |R(f, P, T ) − R(fn, P, T )| < ε for all n ≥ N and all
partition pairs (P, T ). Use uniform convergence of fn to f to choose N such that
for n ≥ N , we have |f(x)− fn(x)| < ε

b−a for all x ∈ [a, b]; from here you should
be able to derive the desired inequality.


