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Problem

Show that if f, : (X,d) — (Y,d") is uniformly continuous for each n € N and if f,, - f uniformly as n — oo,

then f is uniformly continuous.

Proof. Let € >0 be given. Our goal is to find § > 0 such that if d(x,y) < then d'(f(z), f(y)) <e.
Since f,, - f uniformly, there exists N € N such that d'(f,(z) - f(£)) < ¢/3 for all Z € X whenever n > N. Fix
any n greater than N. On the other hand, since f,, is uniformly continuous, there also exists é > 0 such that

d'(fn(2), fn(7)) < €/3 whenever d(Z,7) < 6. Combining the two results with triangle inequality, we have

d'(f(x), f(y)) <d'(f(@), fu(@)) +d'(fn(2), () + d' (), F ()

<48 %ze whenever d(z,y) < ¢ for z,y € X.
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Hence f is uniformly continuous.
Dini’s Theorem

Prove the following:

Theorem: Dini’s Theorem

Let X be a compact metric space and let f,, : X - R be a sequence of continuous functions. Assume that
the functions f,, converge pointwise to f: X — R, that f is continuous, and that for all x € X, the sequence
{fn(x)}2, is a decreasing sequence of real numbers. Then f, converges uniformly to f. Same result holds

if {fn(x)}52, is a monotone increasing function.

n=1

Proof. Let € >0 be given. Our goal is find N € N such that |f,(z), f(x)| < € for all € X whenever n > N.
Define g,, := f, — f; it follows that g, is continuous function from X to [0,00). Define U, := ¢, 1{[0,¢)}. By
open set condition we know each U, is open. Since f, — f pointwise, each x € X is contained in some U; for i

sufficiently large. Therefore

oo
(J Ui is an open cover of X.
=1

k
By the compactness of X we can extract a finite subcover | JU; > X. Since {f,} is monotonously decreasing,
i=1
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so is {gn}, and thus {U,} is increasing. Therefore if the subcover covers X, so does Uy, the largest scrap itself.

Hence if n 2 k, |fn(z) - f(x)] <€ for all x € X, i.e., f, - f uniformly. O

More on Nets

Let A be a directed set. Consider a sequence f,(a) of nets from A to a metric space Y. Assume that:

(1) For each fixed n, the net f,(a) converges to a limit L, in Y.

(2) The nets f, converge uniformly (as a sequence of functions A - Y') to some net f: A > Y.

(a) Prove that the limits {L,};2; form a Cauchy sequence in Y.

Proof. Let € >0 be given. Our goal is to show that d(L,,, L,) < € for sufficiently large m,n.

Since f,, — f uniformly, there exists N € N such that d(f,(a), f,.(a)) < ¢/3 for all @ whenever m,n > N.
Now pick and fix m, n. Since lim f,, = L, there exists a,, € A such that d(f,(a), L,) < €¢/3 whenever a,, < a.
Likewise, since lim f,, = L,,, there exists a,, € A such that d(f,.(a), Ly,) < €¢/3 whenever a,, < a.

By the third axiom of directed set, let @ € A be an upper bound for a, and a,,. Then for all a € A with

a < a, we have

d(Lma Ln) < d(Lna fn(a)) + d(fn ((1), fm(a)) + d(fm(a)a Lm)

€ € €
<—+-+-=¢

i.e., the limits form a Cauchy sequence in Y. O

(b) Now assume that the sequence {L,}%, converges to some L € Y. For example, this will always hold if Y is
complete. Prove that the limit of f (as a net from A to Y) exists and equals L.
Proof. Let € >0 be given. Our goal is to show that d(f(a), L) < ¢ for all a with ag < a for some ag.
Since f,, — f uniformly, there exists N7 € N such that d(f(a), f.(a)) < ¢/3 for all @ whenever n > N.
Since L, — L, there exists another Ny € N such that d(L,,, L) < ¢/3 whenever n > N.
Finally, since lim f,, = L, there exists a,, € A such that d(f,(a), L) < €/3 whenever a,, < a.

Now combine what we have above. Define N := max{Nj, No}. Let a € A be such that a,, < a. Then,

d(f(a),L) <d(f(a), fn(a))+d(fn(a),Ly)+d(Ly,L)

€ € €
<—+-+= =g
3 3 3
since a is arbitrary as long as a, < a, we conclude that f(a) - L, i.e., lim f = L. O

(c¢) Use the above part to give an alternate proof that if X and Y are metric spaces and f,, : X — Y are continuous
at x € X and converge uniformly to f: X — Y, then f is continuous at x.

Proof. Pick z € X. If x is an isolation point, then if a sequence {x,} — z, the tail is constant. Therefore

any function X - Y, including f, maps {x,} to a sequence with a constant tail in Y, continuous indeed.

If £ € X is not an isolation point, define a directed set A := X \ {z} with <t a < d’ if d(a’ - z) < d(a - x).

We first prove a lemma below:
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Lemma

If z € X is not isolated, then g : X — Y is continuous at z if and only if g’ 4 viewed as a net to R

converges to g(x).

Proof. = : for any € > 0, continuity at = implies that there exists > 0 such that |g(z') — g(z)| < €
whenever d(z’, ) < 4. Since z is not isolated there exists some y € B(x,d). It follows that, for all a € A,
if y < a then a € B(x,d) and so |g(a) — g(a)| <, i.e., g|A — g(x) as a net.

<~ let {z,} c¢ X be a sequence converging to z. We want to show that g(x,) - g(z). WLOG
assume {z,} ¢ X \ {z}, as this claim is trivial when g acts on z itself. Then for any € > 0 there exists
ap € A such that |g(a) — g(x)| < € whenever ag < a. Setting 0 := d(x, ag), we immediately have the € — ¢

condition of continuity, and the lemma has been proven. O

|A converges to f,(z) as a net.

By assumption f,, - f uniformly so f,(xz) — f(z). On the other hand, by (b), f | 4 Viewed as a net also

Back to the main proof: since each f, is continuous at z, by lemma f,

converges to f(z). Using the lemma one more time, we conclude that f is continuous at x. O
(d) Use part (b) to give an alternate proof that if [a,b] is a closed interval in R and f, : [a,b] » R are Riemann
integrable functions converging uniformly to f: [a,b] = R, then f is Riemann integrable.
Proof. Let A be the set of tagged partitions (P,T) of [a,b] with <: (P,T) < (P'T’) when P’ refines
P. By HWI, a function f : [a,b] - R is Riemann integrable with integral I if and only if the net
(P,T)~ R(f,P,T) converges to I.
Since f,, — f uniformly, there exists N € N such that, for n > N,

If(Z) - ful@)] < bi for all 7 ¢ [a, b].
-a
Then it follows that, regardless of choice of (P, T),
|R(f7P7T) - R(fnquT)| < Hf - fn”sup(b_ a’) <€

In other words, the nets (P,T") = R(f,,P,T) converge uniformly in (P,T") to the net (P,T) - R(f,P,T).
By (a) the limits R(f,, P,T) form a Cauchy sequence and by completeness of R, these limits converge in
R. Finally, by (b), we know the net (P,T") » R(f, P,T) converges, and this by HW1 implies f is Riemann
integrable. O



