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Pugh, Ex. 4.4(b)

Problem

Show that if fn ∶ (X,d) → (Y, d′) is uniformly continuous for each n ∈ N and if fn → f uniformly as n →∞,

then f is uniformly continuous.

Proof. Let ε > 0 be given. Our goal is to find δ > 0 such that if d(x, y) < δ then d′(f(x), f(y)) < ε.
Since fn → f uniformly, there exists N ∈ N such that d′(fn(x̃) − f(x̃)) < ε/3 for all x̃ ∈ X whenever n ⩾ N . Fix

any n greater than N . On the other hand, since fn is uniformly continuous, there also exists δ > 0 such that

d′(fn(x̃), fn(ỹ)) < ε/3 whenever d(x̃, ỹ) < δ. Combining the two results with triangle inequality, we have

d′(f(x), f(y)) ⩽ d′(f(x), fn(x)) + d′(fn(x), fn(y)) + d′(fn(y), f(y))

< ε

3
+ ε

3
+ ε

3
= ε whenever d(x, y) < δ for x, y ∈X.

Hence f is uniformly continuous.

Dini’s Theorem

Prove the following:

Theorem: Dini’s Theorem

Let X be a compact metric space and let fn ∶ X → R be a sequence of continuous functions. Assume that

the functions fn converge pointwise to f ∶X → R, that f is continuous, and that for all x ∈X, the sequence

{fn(x)}∞n=1 is a decreasing sequence of real numbers. Then fn converges uniformly to f . Same result holds

if {fn(x)}∞n=1 is a monotone increasing function.

Proof. Let ε > 0 be given. Our goal is find N ∈ N such that ∣fn(x), f(x)∣ < ε for all x ∈X whenever n ⩾ N .

Define gn ∶= fn − f ; it follows that gn is continuous function from X to [0,∞). Define Un ∶= g−1n {[0, ε)}. By

open set condition we know each Un is open. Since fn → f pointwise, each x ∈ X is contained in some Ui for i

sufficiently large. Therefore
∞

⋃
i=1

Ui is an open cover of X.

By the compactness of X we can extract a finite subcover
k

⋃
i=1

Ui ⊃ X. Since {fn} is monotonously decreasing,
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so is {gn}, and thus {Un} is increasing. Therefore if the subcover covers X, so does Uk the largest scrap itself.

Hence if n ⩾ k, ∣fn(x) − f(x)∣ < ε for all x ∈X, i.e., fn → f uniformly.

More on Nets

Let A be a directed set. Consider a sequence fn(a) of nets from A to a metric space Y . Assume that:

(1) For each fixed n, the net fn(a) converges to a limit Ln in Y .

(2) The nets fn converge uniformly (as a sequence of functions A→ Y ) to some net f ∶ A→ Y .

(a) Prove that the limits {Ln}∞n⩾1 form a Cauchy sequence in Y .

Proof. Let ε > 0 be given. Our goal is to show that d(Lm, Ln) < ε for sufficiently large m,n.

Since fn → f uniformly, there exists N ∈ N such that d(fn(ã), fm(ã)) < ε/3 for all ã whenever m,n ⩾ N .

Now pick and fix m,n. Since lim fn = Ln, there exists an ∈ A such that d(fn(ã), Ln) < ε/3 whenever an ⪯ ã.
Likewise, since lim fm = Lm, there exists am ∈ A such that d(fm(ã), Lm) < ε/3 whenever am ⪯ ã.
By the third axiom of directed set, let ã ∈ A be an upper bound for an and am. Then for all a ∈ A with

ã ⪯ a, we have

d(Lm, Ln) ⩽ d(Ln, fn(a)) + d(fn(a), fm(a)) + d(fm(a), Lm)

< ε

3
+ ε

3
+ ε

3
= ε,

i.e., the limits form a Cauchy sequence in Y .

(b) Now assume that the sequence {Ln}∞n⩾1 converges to some L ∈ Y . For example, this will always hold if Y is

complete. Prove that the limit of f (as a net from A to Y ) exists and equals L.

Proof. Let ε > 0 be given. Our goal is to show that d(f(a), L) < ε for all a with a0 ⪯ a for some a0.

Since fn → f uniformly, there exists N1 ∈ N such that d(f(ã), fn(ã)) < ε/3 for all ã whenever n ⩾ N .

Since Ln → L, there exists another N2 ∈ N such that d(Ln, L) < ε/3 whenever n ⩾ N .

Finally, since lim fn = Ln, there exists an ∈ A such that d(fn(ã), Ln) < ε/3 whenever an ⪯ ã.
Now combine what we have above. Define N ∶=max{N1,N2}. Let a ∈ A be such that an ⪯ a. Then,

d(f(a), L) ⩽ d(f(a), fN(a)) + d(fN(a), LN) + d(LN , L)

< ε

3
+ ε

3
+ ε

3
= ε,

since a is arbitrary as long as an ⪯ a, we conclude that f(a) → L, i.e., lim f = L.

(c) Use the above part to give an alternate proof that if X and Y are metric spaces and fn ∶X → Y are continuous

at x ∈X and converge uniformly to f ∶X → Y , then f is continuous at x.

Proof. Pick x ∈ X. If x is an isolation point, then if a sequence {xn} → x, the tail is constant. Therefore

any function X → Y , including f , maps {xn} to a sequence with a constant tail in Y , continuous indeed.

If x ∈ X is not an isolation point, define a directed set A ∶= X ∖ {x} with ⪯∶ a ⪯ a′ if d(a′ − x) ⩽ d(a − x).
We first prove a lemma below:
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Lemma

If x ∈ X is not isolated, then g ∶ X → Y is continuous at x if and only if g∣
A

viewed as a net to R

converges to g(x).

Proof. Ô⇒ : for any ε > 0, continuity at x implies that there exists δ > 0 such that ∣g(x′) − g(x)∣ < ε
whenever d(x′, x) < δ. Since x is not isolated there exists some y ∈ B(x, δ). It follows that, for all ã ∈ A,
if y ⪯ ã then ã ∈ B(x, δ) and so ∣g(ã) − g(a)∣ < ε, i.e., g∣

A
→ g(x) as a net.

⇐Ô : let {xn} ⊂ X be a sequence converging to x. We want to show that g(xn) → g(x). WLOG

assume {xn} ⊂ X ∖ {x}, as this claim is trivial when g acts on x itself. Then for any ε > 0 there exists

a0 ∈ A such that ∣g(ã) − g(x)∣ < ε whenever a0 ⪯ ã. Setting δ ∶= d(x, a0), we immediately have the ε − δ
condition of continuity, and the lemma has been proven.

Back to the main proof: since each fn is continuous at x, by lemma fn∣A converges to fn(x) as a net.

By assumption fn → f uniformly so fn(x) → f(x). On the other hand, by (b), f ∣
A

viewed as a net also

converges to f(x). Using the lemma one more time, we conclude that f is continuous at x.

(d) Use part (b) to give an alternate proof that if [a, b] is a closed interval in R and fn ∶ [a, b] → R are Riemann

integrable functions converging uniformly to f ∶ [a, b] → R, then f is Riemann integrable.

Proof. Let A be the set of tagged partitions (P,T ) of [a, b] with ⪯∶ (P,T ) ⪯ (P ′T ′) when P ′ refines

P . By HW1, a function f ∶ [a, b] → R is Riemann integrable with integral I if and only if the net

(P,T ) ↦ R(f,P, T ) converges to I.

Since fn → f uniformly, there exists N ∈ N such that, for n ⩾ N ,

∣f(x̃) − fn(x̃)∣ <
ε

b − a for all x̃ ∈ [a, b].

Then it follows that, regardless of choice of (P,T ),

∣R(f,P, T ) −R(fn, P, T )∣ ⩽ ∥f − fn∥sup(b − a) < ε.

In other words, the nets (P,T ) ↦ R(fn, P, T ) converge uniformly in (P,T ) to the net (P,T ) ↦ R(f,P, T ).
By (a) the limits R(fn, P, T ) form a Cauchy sequence and by completeness of R, these limits converge in

R. Finally, by (b), we know the net (P,T ) ↦ R(f,P, T ) converges, and this by HW1 implies f is Riemann

integrable.
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