
HOMEWORK, WEEK 5

This assignment is due Friday, February 19 in lecture. Handwritten solutions are accept-
able but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1) Let [a, b] ⊂ R and let fn : [a, b] → R be differentiable functions. Suppose that the
derivatives f ′

n converge uniformly to a function g : [a, b] → R and that for some
x0 ∈ [a, b], the function values fn(x0) converge to some limit L in R (i.e. (fn)
converges “pointwise somewhere,” a very weak condition). Prove that the functions
fn converge uniformly to some function f : [a, b]→ R.

Hint: It suffices to show the sequence of functions (fn) is uniformly Cauchy; for
this, try to relate |fn(x) − fm(x)| to |fn(x0) − fm(x0)| which can be made small for
large n,m. You’ll have to deal with terms like |fn(x) − fn(x0)|; can you show these
are small for large n, uniformly in x, using the mean value theorem?

Remark. As we’ll discuss in class, this result lets us weaken the hypotheses of The-
orem 9 in Section 4.1 of Pugh; in particular, the pointwise limit of a sequence of
differentiable functions is differentiable provided that the sequence of derivatives con-
verges uniformly (you don’t need to know a priori that convergence of the functions
themselves is uniform, only convergence of their derivatives).

(2) Let fn : [−1, 1] → R be defined by fn(x) =
√
x2 + 1/n, and let f : [−1, 1] → R be

defined by f(x) = |x|. Prove that the functions fn converge uniformly to f .

Hint: Can you apply last week’s homework?

Remark. As mentioned in the book, this example shows that a uniform limit of
differentiable functions may not be differentiable (to show fn is differentiable or even
smooth, use the quotient rule repeatedly). In fact, it’s possible to for the uniform
limit of smooth functions to be nowhere differentiable (an example was given by
Weierstrass in 1872 and a related example is discussed in Section 4.7 of Pugh; histor-
ically it was very surprising that a continuous nowhere-differentiable function could
exist at all).

(3)

Definition. Let (X, d) and (Y, d′) be metric spaces and let fn : X → Y be a sequence
of functions. Let f : X → Y be another function.
• We say (fn)∞n=1 converges compactly to f if for any compact subset K ⊂ X, the

restrictions of fn to K converge uniformly to the restriction of f to K.
• We say (fn)∞n=1 converges locally uniformly to f if for any x ∈ X, there exists

an open neighborhood U of x such that the restrictions of fn to U converge
uniformly to the restriction of f to U .
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Show that if (X, d) is locally compact, i.e. for all x ∈ X there exist x ∈ U ⊂ K ⊂ X
with U open and K compact, and fn, f : X → Y are functions, then the functions
fn converge compactly to f if and only if they converge locally uniformly to f .

Hint: Local compactness should give you (compact convergence =⇒ local uniform
convergence); for the other direction, try using the open-covers characterization of
compactness.

Remark. Local uniform convergence is especially important for holomorphic func-
tions; note that any open subset of C (or R, or Rn) is locally compact. If fn : U → C
is a sequence of holomorphic functions converging locally uniformly to f : U → C,
then f is also holomorphic and the derivatives f ′

n converge locally uniformly to f ′.
This is a remarkable fact; in particular, unlike for real-differentiable functions, the
uniform limit of holomorphic (“complex-differentiable”) functions is always holomor-
phic (“complex-differentiable”). One can prove this fact using the Cauchy integral
formula in complex analysis, differentiation under the integral sign (Theorem 14 in
Section 5.2 of Pugh), and a variation of “uniform convergence preserves integrals.”

Given this fact, one gets an alternate proof that (complex and thus real) convergent
power series are infinitely differentiable and can be differentiated term-by-term in
their disk of convergence. We’ll prove the result about term-by-term differentiation
for real power series using the computation of the radius of convergence for the
differentiated series from HW 3, plus our theorem on uniform convergence of the
sequence of derivatives. Our proof could also be adapted to the complex setting with
a bit more work, although most complex analysis books seem to do the radius-of-
convergence computation like us and then do the rest from scratch. In any of the
above approaches, the Weierstrass M -test is crucial in showing that power series
converge locally uniformly (i.e. converge compactly) on their disk or interval of
convergence.

(4) For [a, b] ⊂ R, consider the vector space C0([a, b],R) (we could take functions into C
instead and have a complex vector space). We have a norm ‖ · ‖sup on C0([a, b],R)
making it into a Banach space. In this problem we will consider another norm on
C0([a, b],R) that does not give a complete metric.

Definition. For f ∈ C0([a, b],R), define ‖f‖1 :=
∫ b

a
|f(x)|dx. The norm axioms hold

for ‖ · ‖1 (make sure you check them to your own satisfaction; the requirement that

if ‖v‖ = 0 then v = 0 holds since a continuous f with
∫ b

a
|f(x)|dx = 0 must be zero

everywhere).

(a) Show that if fn, f ∈ C0([a, b],R) and fn converges to f in ‖ · ‖sup, then fn
converges to f in ‖ · ‖1.

(b) Give an example of fn, f ∈ C0([0, 1],R) such that fn converges to f in ‖ · ‖1 but
not in ‖ · ‖sup.

(c) Show that (C0([0, 1],R), ‖ · ‖1) is not complete (i.e. not a Banach space).

Hint: For the first statement, you can apply a result from class, although it’s a bit
overpowered here since we already know continuous functions are Riemann integrable.
Alternatively, you can argue directly that ‖g‖1 ≤ (b−a)‖g‖sup for all g ∈ C0([a, b],R),
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and use this fact to finish the proof (this argument basically repeats the second part
of the corresponding proof in class, after integrability has been proven).

For the second statement, try to find continuous functions fn on [0, 1] such that∫ 1

0
|fn(x)|dx converges to zero as n→∞, but such that fn do not converge uniformly

to the zero function. You can adapt an example that has already been discussed in
Section 4.1 if you want.

For the third statement, you can use functions fn which are zero on most of [0, 1/2],
then increase steeply to arrive at fn(1/2) = 1 and have fn(x) = 1 for x ∈ [1/2, 1].
As n increases, the functions should wait longer (closer to 1/2) to start increasing
from zero to one, and their steepness should be greater. Show that your functions are
Cauchy in d1. Assume they converge in d1 to a continuous function f : [0, 1]→ R, and
try to derive a contradiction: show that the restrictions of fn to [0, 1/2] converge in
(C0([0, 1/2],R), d1) to both the zero function and to f |[0,1/2]. By uniqueness of limits
in the metric space (C0([0, 1/2],R), d1), it follows that f |[0,1/2] is the zero function.
Show that f |[1/2,1] = 1 similarly and derive a contradiction.

Remark. One could ask if dropping the continuity requirement and considering ‖·‖1
on the vector space of Riemann integrable functions R[a, b] fixes the completeness
problem. The first issue is that ‖ · ‖1 is not a norm on R[a, b]: it is possible to have
‖f‖1 = 0 without f = 0 (continuity prevented this from happening above). To fix

this issue, you could define an equivalence relation f ∼ g if
∫ b

a
|f(x) − g(x)|dx = 0

and let R1[a, b] = R[a, b]/ ∼; one can check that R1[a, b] is a vector space and ‖ · ‖1
is a (well-defined) norm on R1[a, b].

In fact, (R1[a, b], ‖ · ‖1) is also not complete, i.e. not a Banach space. However,
if you perform the same construction with Lebesgue integrals (as covered in Math
525a), you get a Banach space known as L1([a, b]) (this is a main advantage of the
Lebesgue integral). In fact, there are Banach spaces Lp([a, b]) for 1 ≤ p < ∞,

defined similarly with ‖f‖p = (
∫ b

a
|f(x)|pdx)1/p (and consisting of functions f with

|f |p Lebesgue integrable, modulo equivalence). In all cases the equivalence relation
is the same as almost-everywhere equality, and the Lp spaces can be generalized to
Lp(X,Σ, µ) for an arbitrary measure space (X,Σ, µ) (see 525a for measure spaces as
well as Lebesgue integrals).

For (X,Σ, µ) = N with the counting measure, one recovers `p spaces of sequences,
and for (X,Σ, µ) = {1, . . . , n} with the counting measure, one recovers `p norms on
Rn, including the familiar Euclidean norm `2. In general, Lp is only a Hilbert space
when p = 2; for this reason, L2 is especially important (e.g. L2(R3;C) is the quantum
Hilbert space for a particle moving in R3).

For p = ∞, we have studied (generalizations of) Cb(X,R) when X is a set. If we
have a measure-space structure on X, we can study a related space L∞(X,Σ, µ;R) =:
L∞(X). Its elements are “essentially bounded” measurable functions modulo almost-
everywhere inequality, rather than just plain bounded functions, and the norm ‖·‖∞ is
the “essential supremum” (a measure-zero-ignoring version of the sup norm ‖·‖sup we
have been considering). For X = [a, b] with Lebesgue measure, continuous functions
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that are equal almost everywhere are equal everywhere, and the essential supremum
on continuous functions coincides with the sup norm we have defined.

Thus, you showed above that on the subspace of continuous functions inside
L∞([a, b]), convergence in L∞ implies convergence in L1. In general, if (X,Σ, µ)
does not have sets of finite but arbitrarily large measure (e.g. X = [a, b]), then for
p ≤ q ∈ [1,∞], Lq(X) ⊂ Lp(X) and ‖ · ‖p ≤ C‖ · ‖q for some constant C. If (X,Σ, µ)
does not have sets of nonzero but arbitrarily small measure (e.g. X = N), then for
p ≤ q ∈ [1,∞], Lp(X) ⊂ Lq(X) and ‖ · ‖q ≤ C‖ · ‖p for some constant C.


