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Problem 1

Let [a, b] ⊂ R and let fn ∶ [a, b] → R be differentiable functions. Suppose that the derivatives f ′n converge

uniformly to a function g ∶ [a, b] → R and that for some x0 ∈ [a, b], the function values fn(x0) converge

to some limit L in R (i.e. {fn} converges “pointwise somewhere,” a very weak condition). Prove that the

functions fn converge uniformly to some function f ∶ [a, b] → R.

Proof. Let ε > 0 be given. Since R is complete, it suffices to show that {fn} is uniformly Cauchy, i.e., for

sufficiently large m,n, ∣fm(x) − fn(x)∣ < ε for all x ∈ [a, b]. First notice that, by triangle inequality,

∣fm(x) − fn(x)∣ = ∣fm(x) − fm(x0) + fm(x0) − fn(x0) + fn(x0) − fn(x)∣

⩽ ∣fm(x0) − fn(x0)∣ + ∣[fm(x) − fm(x0)] − [fn(x0) − fn(x)]∣

= ∣fm(x0) − fn(x0)∣ + ∣(fm − fn)(x) − (fm − fn)(x0)∣.

fn

fm

x0 x

∣fn(x) − fn(x0)∣

∣fn(x) − fn(x0)∣

∣fn(x0) − fm(x0)∣

∣fn(x) − fm(x)∣

The first term can be easily bounded by ε/2 since pointwise convergence at x0 implies Cauchy-ness there. Let

N1 be the lower bound of m,n in that corresponding ε −N condition.

To bound the second term, notice that since fm, fn are differentiable, so is fm − fn. By mean value theorem

there exists ξ ∈ [a, b] such that

(fm − fn)(x) − (fm − fn)(x0) = (b − a)(fm − fn)′(ξ).

On the other hand, notice that (fm − fn)′ = f ′m − f ′n. The uniform convergence of the derivatives also imply

uniform Cauchy-ness, and so there exists N2 ∈ N such that

(fm − fn)′(x̃) = (fm)′(x̃) − (fn)′(x̃) <
ε

2(b − a) for all x̃ ∈ [a, b].
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Taking N ∶=max{N1,N2}, we have

∣fm(x) − fn(x)∣ ⩽ ∣fm(x0) − fn(x0)∣ + (b − a)(fm − fn)′(ξ) <
ε

2
+ ε

2(b − a)(b − a) = ε,

and the claim follows.

Problem 2

Let fn ∶ [−1,1] → R be defined by fn(x) =
√
x2 + 1/n and let f ∶ [−1,1] → R be defined by f(x) = ∣x∣. Prove

that the functions fn converge uniformly to f .

Proof. Since (a + b)2 = a2 + 2ab + b2, one can easily show that
√
a2 + b2 ⩽ a + b for nonnegative a and b. Then,

fn(x) − f(x) ⩽
⎧⎪⎪⎨⎪⎪⎩

√
x2 + (1/√n)2 − ∣x∣ x ⩾ 0

√
x2 + (1/√n)2 − ∣x∣ x < 0

⎫⎪⎪⎬⎪⎪⎭
= 1√

n
,

and uniform convergence follows by taking N > (1/ε)2 for any ε > 0 given.

Alternate Proof. This claim directly follows from Dini’s theorem from HW4.

Definition

Let (X,d) and (Y, d′) be metric spaces and let fn ∶ X → Y be a sequence of functions. Let f ∶ X → Y be

another function.

(1) We say (X,d) is locally compact if for all x ∈X there exists open neighborhood U ⊂K ⊂X with K

open.

(2) We say {fn}n⩾1 converges compactly to f if, for any compact subset K ⊂ X, fn∣K converges

uniformly to f ∣
K
.

(3) We say {fn}n⩾1 converges locally uniformly to f if, for any x ∈X, there exists an open neighborhood

U of x such that fn∣U → f ∣
U

uniformly.

Problem 3

Show that if (X,d) is locally compact, and fn, f ∶ X → Y are functions, then fn → f compactly if and only

if fn → f locally uniformly.

Proof. Ô⇒ is trivial: fn∣K → f ∣
K

immediately gives us fn∣U → f ∣
U
, since we know U ⊂K.

For ⇐Ô , let K ⊂ X be an arbitrary compact set. By the assumption that (X,d) is locally compact, for each

x ∈ K there exists some open neighborhood U containing x. Doing so, we obtain a covering of K, and by its

compactness there exists a finite subcovering
n

⋃
i=1
Ui ⊃K.

Let ε > 0 be given. Using the assumption that fn → f locally uniformly, there exists N1 ∈ N such that

d′(fm(x), f(x)) < ε for all x ∈ U1, whenever m ⩾ N1. We can repeat this process for all scraps in the open

covering, i.e., there exists Ni such that d′(fm(x), f(x)) < ε for all x ∈ Ui whenever m ⩾ Ni. Since this covering
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is finite, we are allowed to define

N ∶= max
1⩽i⩽n

Ni.

It follows that, if m ⩾ N then d′(fm(x), f(x)) < ε for all x ∈
n

⋃
i=1
Ui and in particular for all x ∈ K. This shows

the uniform convergence on K, and the claim follows.

Problem 4

For [a, b] ⊂ R, consider the vector space C0([a, b],R).

(1) Show that if fn, f ∈ C0([a, b],R) and fn → f in ∥ ⋅ ∥sup, then fn converges to f in ∥ ⋅ ∥1.

(2) Give an example of fn, f ∈ C0([0,1],R) such that fn converges to f in ∥ ⋅ ∥1 but not in ∥ ⋅ ∥sup.

(3) Show that (C0[0,1],R, ∥ ⋅ ∥1) is not Banach.

Proof(s).

(1) Let ε > 0 be given. By the uniform convergence w.r.t. ∥ ⋅ ∥sup, there exists N ∈ N such that ∥fn − f∥sup <
ε/(b − a) whenever n ⩾ N . This means ∣fn(x) − f(x)∣ < ε/(b − a) for all x ∈ [a, b]. Therefore,

∥fn − f∥1 = ∫
b

a
∣fn(x̃) − f(x̃)∣ dx̃ <

ε

b − a(b − a) = ε,

i.e., fn → f w.r.t. ∥ ⋅ ∥1 as well.

(2) Consider {fn}n⩾1 ⊂ C0([0,1],R) defined by fn ∶= xn. Then ∥fn∥1 = ∫
1

0
x̃n dx̃ = x̃n+1

n + 1
∣
1

x̃=0
= 1

n + 1
. Clearly

as n→∞, ∥fn∥1 → 0 = ∥f∥1 where f ≡ 0.

On the other hand, ∥fn∥sup = fn(1) = 1 for all n, whereas ∥f∥sup = 0.

(3) Consider the sequence of functions {fn} where fn(x) ≡ 0 for x ∈ [0,1/2 − 1/n], fn(x) ≡ 1 for x ∈ [1/2,1],
and fn(x) increases with slope n over the interval (1/2 − 1/n,1/2). See the figure below.

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ [0,0.5 − 1/n],

nx − n − 2

2
x ∈ (0.5 − 1/n,0.5),

1 x ∈ [0.5,1].

0.5 1

0

1

x

fn(x)

Now define a piecewise function f ∶ [0,1] → R with f(x) ≡ 0 for x ∈ [0,0.5) and f(x) ≡ 1 for x ∈ [0.5,1].
We’ll show that fn → f with respect to ∥ ⋅ ∥1:

∥f − fn∥1 = ∫
1

0
f(x̃) − fn(x̃) dx̃ = ∫

0.5

0.5−1/n
nx̃ − n − 2

2
dx̃ = 1

2n

which converges to 0 as n→∞. However, f ∉ C0([0,1],R) and so (C0([0,1]), ∥ ⋅ ∥1) is not Banach.
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