
HOMEWORK, WEEK 6

This assignment is due Monday, March 1 in lecture. Handwritten solutions are acceptable
but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1) Let {f1, . . . , fk} be a finite set of uniformly continuous functions from X to Y , where
X and Y are two metric spaces. Prove that {f1, . . . , fk} is equicontinuous.

(2) Let {fα}α∈A be an equicontinuous set of functions from X to Y , and let g be a
uniformly continuous function from Y to Z (where X, Y , and Z are metric spaces).
Prove that the set of functions {g ◦ fα}α∈A is equicontinuous.

Hint : Given ε > 0, use uniform continuity of g to choose δ appropriately, then use
this δ as “ε” in the definition of equicontinuity of the set {fα}.

(3) This problem is based on the introduction to André Weil’s book Elliptic functions
according to Eisenstein and Kronecker, where he suggests that one reason for the
historical underappreciation of Eisenstein’s work was that the notion of uniform con-
vergence had not been developed in Eisenstein’s time and to later authors like Weier-
strass, Eisenstein’s work may have seemed non-rigorous (for example, he implicitly
assumes that the series he introduces can be differentiated term-by-term). In his
introduction, Weil outlines why there is no issue with the types of series considered
by Eisenstein; we will see how the theorem we proved on uniform convergence and
derivatives gives a straightforward argument for this fact.

(a) The examples considered in Weil’s introduction are the doubly-infinite series∑∞
µ=−∞

1
(z−µ)n for n ≥ 1, which we treat as singly-infinite series by taking sym-

metric partial sums (when n = 1 this is necessary for convergence of the series).
Correspondingly, consider the series

∞∑
µ=M

(
1

(z − µ)n
+

1

(z + µ)n

)
of functions of a complex variable z (when discussing convergence, we will feel
free to discard finitely many terms at the beginning of the series and start from
µ = M).

Show that for any z ∈ C with |z| < M , the above series converges absolutely
(the restriction |z| < M is so that there’s no question about whether some term
of the series involves division by zero).

Hint: For n > 1, try comparing with a convergent p-series. For n = 1, rewrite
the series as

∑∞
µ=M

2z
z2−µ2 so you can again compare with a convergent p-series.

(b) Now, for z ∈ C \ Z, let

f(z) =
1

z
+
∞∑
µ=1

(
1

(z − µ)n
+

1

(z + µ)n

)
.
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Prove, using our theorem on uniform convergence and derivatives, that f is
holomorphic (complex differentiable) on C \ Z and that its derivative f ′(z) is
given by differentiating the above series term-by-term.

Hint: Try discarding finitely many terms (each term is holomorphic) and apply-
ing the theorem on uniform convergence and derivatives to the remaining series,
in a neighborhood of any given point z0 ∈ C \Z (this theorem holds in the com-
plex setting too, as we’ll discuss briefly in Monday’s lecture). When showing the
term-by-term differentiated series converges uniformly in a neighborhood of z0,
it might help to revisit the first part of the problem where the hint suggested
comparison with a p-series. Can you use the Weierstrass M-test to show this
convergence is uniform in z, for z in a neighborhood of z0? Remember that n is
constant!

Remark. In fact, for n = 1 we have f(z) = π cot(πz); see Weil’s book for much
more on these functions and their generalizations, which have many interesting
relationships with number theory.

Remark. If we had access to the theorems of complex analysis, then we wouldn’t
need to show local uniform convergence of the series of derivatives in order to get
that the limit function is holomorphic; local uniform convergence of the original
series itself would be enough (since the terms are holomorphic). It turns out that
the proof is basically the same either way in this case, though. In general, the
main advantage of our theorem on uniform convergence and derivatives is that
it holds in the real-variables case where one may have differentiability without
analyticity, but for the example at hand complex techniques are natural since
the terms of the series can be naturally viewed as holomorphic functions.

Remark. Weil’s argument uses neither technology from complex analysis nor
our theorem on uniform convergence and derivatives (which also counts as tech-
nology from analysis in some sense). Instead, he uses the binomial series to
derive an expression for f(x + y) as a series whose terms are themselves series
obtained by repeatedly differentiating the series for f term-by-term. From here,

one can directly compute the limit of f(x+y)−f(x)
y

as y goes to zero, yielding the

first term-by-term derivative of the series for f .


