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Problem 1
Let {f1,..., fx} be a finite set of uniformly continuous functions from X to Y where X and Y are two metric
spaces. Prove that {f1,..., fx} is equicontinuous.

Proof. Let € >0 be given. Since f; is uniformly continuous, there exists d; such that
x1,x0 € X, dx(x1,22) <01 = dy (f1(x1), fi(z2)) <e.

A similar argument can be applied to each f, in the set, i.e., there exists d,, such that
x1,m0 € X, dx(x1,22) <0y = dy (fn(x1), fu(22)) <e.

Now we define ¢ := min{dy,...,d;}. This is well-defined because there are only finitely many §’s. It follows that,
for all f,, € {f1,...,fx} and z1,20 € X,

dx(x1,72) <0 == dx(v1,22) <6, == dy (fu(21), fn(22)) <F,
hence the equicontinuity.
Problem 2

Let {fa}aeca be an equicontinuous set of functions X — Y and let ¢ be a uniformly continuous function from

Y - Z. Prove that {go fa}aeca is equicontinuous.

Proof. Let €(z) > 0 be given. By the equicontinuity of g, there exists e¢(y) > 0 (this should be the “§” corre-
sponding to the previous €(z)) such that

Y142 €Y, dy (y1,92) <e(y) = dz(9(y1),9(y2)) < €(2).
Now since {fa}aea is equicontinuous, given this e(y) there exists a d(x) > 0 such that, for all n € A,

w1, 13 € X, dx (v1,72) <6(2) == dy (fu(z1), fn(22)) <e(y)
= dz[g9(fu(21)),9(fn(22))] <€(2)

and the claim follows.



MATH 425b Homeweork 6 YQL

Problem 3

(a) Consider the series
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of functions of a complex variable z. Show that for any z € C with |z| < M, the above series converges

absolutely for n > 1.

(b) For zeC\Z, let
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Prove, using our theorem on uniform convergence and derivatives, that f is holomorphic on C\Z and

that its derivative f’(z) is given by differentiating the above series term by term.

Proof of (a). If p > 1, notice that by triangle inequality
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ul <lz+pl+ =2l = |2+ pl > |ul - |2].

Therefore
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Similarly, when p =1 we have + = 5, and by triangle inequality
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It follows that
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Proof of (b). Consider the sequence of functions {fx} defined by

R =tex (2 L)

+
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By (a), we know that f; converges to f pointwise. It remains to show that f; converges uniformly to some g;

then f is holomorphic with f’ = g. First thing to notice is that each fj is holomorphic with
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Let zg € C\ Z be given. Consider a open neighborhood zp € Q c C\Z. Let 2M € N be such that |z| < 2M for all

z € Q. Then by the previous part we know
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SVl + Z W converges. Notice the summation above starts from p = 2M so that we
n=2M H

Since n+1>1,

can directly compare it with a p-series, but adding the ignored 2M — 1 terms back won’t affect the convergence.

Thus | f;] is bounded by a convergent series, and by Weierstrafi M-test, the series f; converges uniformly on €.

Therefore
1 ad n n
"(2)=g=—-—+ + ,
f(z)=g 22 ;;((Z‘H)"H (Z+u)n+1)
and its differentiability implies that it is holomorphic. O



