HOMEWORK, WEEK 7

This assignment is due Monday, March 8 in lecture. Handwritten solutions are acceptable
but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1)

(Pugh Exercise 4.19, countable case): Let X be a compact metric space and let
A = {a,}n>1 be a countable dense subset of X. For any § > 0, show that there exists
M such that for any x € X, we have d(z,a;) < ¢ for some ¢ with 1 <7 < M. (This
problem supplies an important step in the proof of the Arzeld—Ascoli propagation
theorem.)

Hint: Can you find a way to apply Dini’s theorem?

Let f, : R — R be defined by f,(z) = mzf%;j) for n > 1. Prove that the sequence

(fn)o2, is equicontinuous.

Hint: Given € > 0, choose N such that N1+2 < ¢/2. Use that the functions

{f1,..., fn_1} form an equicontinuous set (from last week’s homework).
Pugh, Exercise 4.22.

Hint: Can the example from the previous problem help you out? Remember to
restrict the domain to a compact subinterval, to answer the question as stated in the
problem.

In next week’s homework we will explore an application of the Stone—Weierstrass
theorem to Fourier series; we need a few preliminary constructions first.

Remark. Fourier series and (especially) Fourier transforms are most naturally treated
using the Lebesgue integral, but one can say many interesting things about them
without setting up this technology, and this is good to do given the applicability of
Fourier analysis in pure and applied math, science and engineering, etc. For an ele-
mentary perspective on Fourier analysis, see Stein and Shakarchi Fourier Analysis,
an Introduction which should be readable given your background from this course.
More advanced treatments can be found in most graduate-level analysis books.

(a) Let S! denote the unit circle in C = R?, i.e. the set of # + iy € C such that
2?2 +y? = 1. Note that S* is a compact metric space (it is a closed and bounded
subset of R?).

Let C9,.(R,C) denote the subset of C°(R,C) consisting of periodic functions,
i.e. functions f : R — C such that f(0 +n) = f(0) for all n € Z and 6§ € R.
Define a map ® : C°(S*,C) — CJ.(R,C) by

O(f)(0) = f(e™).

Problem. Prove that & is well-defined and bijective.
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You may assume basic properties of complex exponentials without proof, e.g.
that e* = e®e” for all z,w € C. You may also use the following fact from
complex analysis:

Proposition (Existence and continuity of complex logarithms). For any ray p
starting at the origin in C, there exists a continuous (even holomorphic) function
log : C\ p — C such that €'°8*) = 2 for all z € C\ p (the ray p is called a branch
cut). If the terminology is unfamiliar, a ray is a semi-infinite line with only one
endpoint (taken to be the origin here).

Hint: For well-definedness, check that ®(f) is continuous and periodic. For
continuity, write ®(f) as a composition; for periodicity, use properties of expo-
nentials. For injectivity, first show that that any z = u + iv € S?! is equal to
e for some w € C; indeed, you can pick a ray p not containing z and then let
w = log(z) where log is defined using the branch cut p as above. Then show
that w must be purely imaginary using properties of exponentials. It follows
that if two functions f, g from S! to C agree at all points e?™, then they agree
everywhere (since all points in S' are of this form).

For surjectivity, given a periodic function F' from R to C, define f : St — C
by f(u+ iv) = F(f) for some 6 € R with €™ = 4 + iv. You can show that f
is well-defined using periodicity of F'; you want to show that f is a continuous
function from S! to C. If you can show that for any w + v in S!, there’s an
open subset W of St such that f|y (the restriction of f to W) is continuous,
then it follows that f is continuous. Again, you can use the above proposition
to show that f is continuous on the open subsets (C\ p) N S* of S (write it as
a composition); any point u + iv is contained in one of these subsets for some
p. Once you know that f is continuous, then ®(f) makes sense, and it follows
from the definition of f that ®(f) = F.

Problem. Prove that the map ® defined in the previous problem is linear and
preserves the uniform norm.

Hint: Linearity should be very quick, but you should make sure you're checking
the right condition (don’t try to show it’s linear in #!). To show it preserves
the uniform norm, show that for f,g € C°(S',C), the set of distances {|f(z) —
g(2)|| z € S'} is equal to the set of distances {|f(e*™™) — g(e*"™)|| 6 € R},

From the above part, we can now identify CJ,(R,C) and C°(S",C) as normed
vector spaces given || - ||sup; in particular, C%, (R, C) is complete (i.e. a Banach

i per
space) given || - [|sup-

However, there is another norm on this infinite dimensional vector space that’s
especially interesting: the L? norm. One caveat is that the resulting metric
is not complete; in many ways it’s more natural to work with the “L? space”
of Lebesgue square-integrable functions modulo almost-everywhere equality, of
which our vector space of continuous functions is a non-closed subspace, but
we’ll stick with continuous functions here.
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By definition, a complex-valued function f(x) = u(x) + iv(z) of a real variable
x € [a,b] is Riemann integrable if its real and imaginary parts u(x) and v(z) are
Riemann integrable; in this case we define fab flx)dx = f; u(x)dx +1 fab v(z)dz.
All results proved about real-valued Riemann integrable functions continue to
hold in the complex case, when they make sense (no monotonicity etc.).

Let f,g € Cp..(R,C). Define

er

<f,g>z=/0 f(@)g(x)d,

where f(x) denotes the complex conjugate of f (this is a choice of convention;
sometimes one conjugates g instead).

Problem. Show that (-,-), is a complex inner product on CJ.(R,C), i.e. show
that the following axioms are satisfied for (-, -)s:

(f.9) =g, [f) for all f,g

(fi+ fo,9) = (fr,9) +(f2,9) for all f1, fo,g

(freg) =c(f,g) forallc f.g

(f, f) is a real number that is > 0 for all f, with equality if and only if

f=o.

Hint: All properties are immediate except the statement about equality in the
last axiom. For this equality statement, you can use a result from Section 3.2 of
Pugh’s book.

For infinite-dimensional inner product spaces like (CD..(R,C),(,)2), the usual
notion of basis or orthonormal basis from linear algebra is not always so use-
ful. It’s more common to have a linearly independent set that’s not literally a
spanning set, but which spans in an “infinite” sense: any element of the vector
space should be a limit of finite linear combinations of basis elements. Thus, we
make the following standard definition, even though it conflicts a bit with the

terminology for finite-dimensional vector spaces:

Definition. An orthonormal basis for a real or complex inner product space
(V,(-,-)) is a subset 8 of V' such that:
e For e,¢’ €  we have (e,¢/) = 0 if e # € and (e,e) = 1 (i.e. [ is an
orthonormal set; this condition implies that [ is linearly independent)
e The span of § (set of finite linear combinations of elements of /3) is dense
in V, where the metric on V is defined by d(v,w) = |jv — w| (where

[oll = v/ (v, v)).

For any n € Z, we have a periodic function e,, : R — C given by e,,(6) = €2™"%. In
next week’s problem set we will show that the functions e,, form an orthonormal
basis for CJ,.(R, C).

Problem. In this problem, just check orthonormality: show that for n € Z, we
have (e, €) = Opmn, i.€. one if n = m and zero otherwise.
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Hint: Using e = cos(#) + isin(f), you can show that €, = e_,. Thus, you can
simplify the expression e,¢e,, with properties of exponentials and then integrate
as usual in calculus.

Now we review some linear algebra. Let (V,(-,-)) be a real or complex inner
product space and let W be a finite-dimensional subspace of V with an or-
thonormal basis {wy, ..., w,}. For v € V| define the orthogonal projection of v
onto W to be

projy (v) 1= (wy, v)wy + - - - + (Wn, V)wy

(this looks like it might depend on the orthonormal basis; the next problem
implies that it doesn’t).

Problem. Show that proj,, (v) € W and v — projy, (v) is in the orthogonal
complement W+ of W, i.e. that (w,v— projy (v)) = 0 for all w € W. Also show
that these properties characterize projy, (v) uniquely, i.e. if v = v; +vy = v] + v}
with vy, v] € W and vy, v, € W+ then vy = v} and vy = v}.

Hint: to check v — projy, (v) is in W+, it suffices to check orthogonality of
v — projy, (v) with each element of an orthonormal basis for W. For the unique
characterization, try some clever subtractions to get a vector that is forced to
be zero.

Problem. In the setting of the previous problem, show that projy, (v) is the
closest element of W to v, i.e. for any w € W we have ||[v—projy (v)|| < |[v—w].

Hint: Try writing v — w as the sum of v — projy,(v), which is in W+, and
projy, (v) — w which is in W. Then expand out the norm squared of v — w.

Remark. In next week’s problem set we will apply the above setup to V =
(C?,.(R,C), (,")2), defining the Fourier coefficients and the Fourier series of f €

per

CPe(R,C). Indeed, for f € CJ,(R,C) and k € Z, define the n-the Fourier

per

coefficient of f to be

~

1
f) 1= (eas fla= [ e f(6)as.

0
The Fourier series of f = f(0) is the doubly infinite series

Y fmea®)= Y fm)em.

n=—oo n=—oo

In more detail, for N, M > 0 the (N, M) partial sum of the Fourier series is

defined to be
N A
Z f(n)em
n=—M

which is the projection of f onto span{e_p;,e_pri1,...,en_1,en} C Cger(R, C).
Convergence of this series (pointwise, uniformly, or in L?) is defined by consid-
ering the set of pairs (N, M) to be a directed set with (Ny, My) < (Ng, My) if
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N1 < Ny and M; < M,. In other words, for each € > 0 there exists (N, M)
such that for n > N and m > M, the appropriate e-condition is satisfied for

S b £ (R)ex.

Using the Stone-Weierstrass theorem, we will show next week that this series

converges to f as a series of vectors in (CD, (R, C), (-,-)2) (i.e. it “ converges to

f in the L? norm”). This result will also imply that the functions e, form an
orthonormal basis for C?, (R, C).

per



