
HOMEWORK, WEEK 7

This assignment is due Monday, March 8 in lecture. Handwritten solutions are acceptable
but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

(1) (Pugh Exercise 4.19, countable case): Let X be a compact metric space and let
A = {an}n≥1 be a countable dense subset of X. For any δ > 0, show that there exists
M such that for any x ∈ X, we have d(x, ai) < δ for some i with 1 ≤ i ≤ M . (This
problem supplies an important step in the proof of the Arzelá–Ascoli propagation
theorem.)

Hint : Can you find a way to apply Dini’s theorem?

(2) Let fn : R → R be defined by fn(x) = sin2(nnx)√
n+2

for n ≥ 1. Prove that the sequence

(fn)∞n=1 is equicontinuous.

Hint : Given ε > 0, choose N such that 1√
N+2

< ε/2. Use that the functions

{f1, . . . , fN−1} form an equicontinuous set (from last week’s homework).

(3) Pugh, Exercise 4.22.

Hint : Can the example from the previous problem help you out? Remember to
restrict the domain to a compact subinterval, to answer the question as stated in the
problem.

(4) In next week’s homework we will explore an application of the Stone–Weierstrass
theorem to Fourier series; we need a few preliminary constructions first.

Remark. Fourier series and (especially) Fourier transforms are most naturally treated
using the Lebesgue integral, but one can say many interesting things about them
without setting up this technology, and this is good to do given the applicability of
Fourier analysis in pure and applied math, science and engineering, etc. For an ele-
mentary perspective on Fourier analysis, see Stein and Shakarchi Fourier Analysis,
an Introduction which should be readable given your background from this course.
More advanced treatments can be found in most graduate-level analysis books.

(a) Let S1 denote the unit circle in C ∼= R2, i.e. the set of x + iy ∈ C such that
x2 + y2 = 1. Note that S1 is a compact metric space (it is a closed and bounded
subset of R2).

Let C0
per(R,C) denote the subset of C0(R,C) consisting of periodic functions,

i.e. functions f : R → C such that f(θ + n) = f(θ) for all n ∈ Z and θ ∈ R.
Define a map Φ : C0(S1,C)→ C0

per(R,C) by

Φ(f)(θ) = f(e2πiθ).

Problem. Prove that Φ is well-defined and bijective.
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You may assume basic properties of complex exponentials without proof, e.g.
that ezw = ezew for all z, w ∈ C. You may also use the following fact from
complex analysis:

Proposition (Existence and continuity of complex logarithms). For any ray ρ
starting at the origin in C, there exists a continuous (even holomorphic) function
log : C \ ρ→ C such that elog(z) = z for all z ∈ C \ ρ (the ray ρ is called a branch
cut). If the terminology is unfamiliar, a ray is a semi-infinite line with only one
endpoint (taken to be the origin here).

Hint: For well-definedness, check that Φ(f) is continuous and periodic. For
continuity, write Φ(f) as a composition; for periodicity, use properties of expo-
nentials. For injectivity, first show that that any z = u + iv ∈ S1 is equal to
ew for some w ∈ C; indeed, you can pick a ray ρ not containing z and then let
w = log(z) where log is defined using the branch cut ρ as above. Then show
that w must be purely imaginary using properties of exponentials. It follows
that if two functions f, g from S1 to C agree at all points e2πiθ, then they agree
everywhere (since all points in S1 are of this form).

For surjectivity, given a periodic function F from R to C, define f : S1 → C
by f(u + iv) = F (θ) for some θ ∈ R with e2πiθ = u + iv. You can show that f
is well-defined using periodicity of F ; you want to show that f is a continuous
function from S1 to C. If you can show that for any u + iv in S1, there’s an
open subset W of S1 such that f |W (the restriction of f to W ) is continuous,
then it follows that f is continuous. Again, you can use the above proposition
to show that f is continuous on the open subsets (C \ ρ) ∩ S1 of S1 (write it as
a composition); any point u + iv is contained in one of these subsets for some
ρ. Once you know that f is continuous, then Φ(f) makes sense, and it follows
from the definition of f that Φ(f) = F .

(b)

Problem. Prove that the map Φ defined in the previous problem is linear and
preserves the uniform norm.
Hint: Linearity should be very quick, but you should make sure you’re checking
the right condition (don’t try to show it’s linear in θ!). To show it preserves
the uniform norm, show that for f, g ∈ C0(S1,C), the set of distances {|f(z)−
g(z)| | z ∈ S1} is equal to the set of distances {|f(e2πiθ)− g(e2πiθ)| | θ ∈ R}.

(c) From the above part, we can now identify C0
per(R,C) and C0(S1,C) as normed

vector spaces given ‖ · ‖sup; in particular, C0
per(R,C) is complete (i.e. a Banach

space) given ‖ · ‖sup.

However, there is another norm on this infinite dimensional vector space that’s
especially interesting: the L2 norm. One caveat is that the resulting metric
is not complete; in many ways it’s more natural to work with the “L2 space”
of Lebesgue square-integrable functions modulo almost-everywhere equality, of
which our vector space of continuous functions is a non-closed subspace, but
we’ll stick with continuous functions here.
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By definition, a complex-valued function f(x) = u(x) + iv(x) of a real variable
x ∈ [a, b] is Riemann integrable if its real and imaginary parts u(x) and v(x) are

Riemann integrable; in this case we define
∫ b
a
f(x)dx =

∫ b
a
u(x)dx+ i

∫ b
a
v(x)dx.

All results proved about real-valued Riemann integrable functions continue to
hold in the complex case, when they make sense (no monotonicity etc.).

Let f, g ∈ C0
per(R,C). Define

〈f, g〉2 =

∫ 1

0

f(x)g(x)dx,

where f(x) denotes the complex conjugate of f (this is a choice of convention;
sometimes one conjugates g instead).

Problem. Show that 〈·, ·〉2 is a complex inner product on C0
per(R,C), i.e. show

that the following axioms are satisfied for 〈·, ·〉2:
• 〈f, g〉 = 〈g, f〉 for all f, g
• 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉 for all f1, f2, g
• 〈f, cg〉 = c〈f, g〉 for all c, f, g
• 〈f, f〉 is a real number that is ≥ 0 for all f , with equality if and only if
f = 0.

Hint: All properties are immediate except the statement about equality in the
last axiom. For this equality statement, you can use a result from Section 3.2 of
Pugh’s book.

(d) For infinite-dimensional inner product spaces like (C0
per(R,C), 〈, 〉2), the usual

notion of basis or orthonormal basis from linear algebra is not always so use-
ful. It’s more common to have a linearly independent set that’s not literally a
spanning set, but which spans in an “infinite” sense: any element of the vector
space should be a limit of finite linear combinations of basis elements. Thus, we
make the following standard definition, even though it conflicts a bit with the
terminology for finite-dimensional vector spaces:

Definition. An orthonormal basis for a real or complex inner product space
(V, 〈·, ·〉) is a subset β of V such that:
• For e, e′ ∈ β we have 〈e, e′〉 = 0 if e 6= e′ and 〈e, e〉 = 1 (i.e. β is an

orthonormal set; this condition implies that β is linearly independent)
• The span of β (set of finite linear combinations of elements of β) is dense

in V , where the metric on V is defined by d(v, w) = ‖v − w‖ (where

‖v‖ =
√
〈v, v〉).

For any n ∈ Z, we have a periodic function en : R→ C given by en(θ) = e2πinθ. In
next week’s problem set we will show that the functions en form an orthonormal
basis for C0

per(R,C).

Problem. In this problem, just check orthonormality: show that for n ∈ Z, we
have 〈en, em〉 = δm,n, i.e. one if n = m and zero otherwise.
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Hint: Using eiθ = cos(θ) + i sin(θ), you can show that en = e−n. Thus, you can
simplify the expression enem with properties of exponentials and then integrate
as usual in calculus.

(e) Now we review some linear algebra. Let (V, 〈·, ·〉) be a real or complex inner
product space and let W be a finite-dimensional subspace of V with an or-
thonormal basis {w1, . . . , wn}. For v ∈ V , define the orthogonal projection of v
onto W to be

projW (v) := 〈w1, v〉w1 + · · ·+ 〈wn, v〉wn
(this looks like it might depend on the orthonormal basis; the next problem
implies that it doesn’t).

Problem. Show that projW (v) ∈ W and v − projW (v) is in the orthogonal
complement W⊥ of W , i.e. that 〈w, v−projW (v)〉 = 0 for all w ∈ W . Also show
that these properties characterize projW (v) uniquely, i.e. if v = v1 + v2 = v′1 +v′2
with v1, v

′
1 ∈ W and v2, v

′
2 ∈ W⊥ then v1 = v′1 and v2 = v′2.

Hint : to check v − projW (v) is in W⊥, it suffices to check orthogonality of
v − projW (v) with each element of an orthonormal basis for W . For the unique
characterization, try some clever subtractions to get a vector that is forced to
be zero.

(f)

Problem. In the setting of the previous problem, show that projW (v) is the
closest element of W to v, i.e. for any w ∈ W we have ‖v−projW (v)‖ ≤ ‖v−w‖.
Hint: Try writing v − w as the sum of v − projW (v), which is in W⊥, and
projW (v)− w which is in W . Then expand out the norm squared of v − w.

Remark. In next week’s problem set we will apply the above setup to V =
(C0

per(R,C), 〈·, ·〉2), defining the Fourier coefficients and the Fourier series of f ∈
C0

per(R,C). Indeed, for f ∈ C0
per(R,C) and k ∈ Z, define the n-the Fourier

coefficient of f to be

f̂(n) := 〈en, f〉2 =

∫ 1

0

e−2πinθf(θ)dθ.

The Fourier series of f = f(θ) is the doubly infinite series
∞∑

n=−∞

f̂(n)en(θ) =
∞∑

n=−∞

f̂(n)e2πinθ.

In more detail, for N,M ≥ 0 the (N,M) partial sum of the Fourier series is
defined to be

N∑
n=−M

f̂(n)en,

which is the projection of f onto span{e−M , e−M+1, . . . , eN−1, eN} ⊂ C0
per(R,C).

Convergence of this series (pointwise, uniformly, or in L2) is defined by consid-
ering the set of pairs (N,M) to be a directed set with (N1,M1) � (N2,M2) if
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N1 ≤ N2 and M1 ≤ M2. In other words, for each ε > 0 there exists (N,M)
such that for n ≥ N and m ≥ M , the appropriate ε-condition is satisfied for∑n

k=−m f̂(k)ek.

Using the Stone–Weierstrass theorem, we will show next week that this series
converges to f as a series of vectors in (C0

per(R,C), 〈·, ·〉2) (i.e. it “ converges to

f in the L2 norm”). This result will also imply that the functions en form an
orthonormal basis for C0

per(R,C).


