

MATH 425b Homework 7

Qilin Ye

March 8, 2021

Problem 1. Let X be a compact metric space and let $A = \{a_n\}$ be a countable dense subset of X . For any $\delta > 0$, show that there exists M such that for any $x \in X$, we have $d(x, a_i) < \delta$ for some i with $i \leq i \leq M$.

Proof. Let $\delta > 0$ be given. By the denseness of A , for each $x \in X$ there exists some $a_i \in A$ such that $d(x, a_i) < \delta$. Therefore the countable union of δ -balls centered at each $a_i \in A$ covers X . Since X is compact, this open cover admits a finite subcover which consists of δ -balls centered at $a_{n_1}, a_{n_2}, \dots, a_{n_k}$. Taking $\max\{n_1, \dots, n_k\}$ gives our desired M and finishes the proof. \square

Problem 2. Let $f_n : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_n(x) = \sin^2(n^n x) / \sqrt{n+2}$ for $n \geq 1$. Prove that the sequence $\{f_n\}$ is equicontinuous.

Proof. Let f_n be defined as above and let $\epsilon > 0$ be given. Notice that for all x , $0 \leq \sin^2(n^n x) \leq 1$, so $0 \leq f_n(x) \leq 1/\sqrt{n+2}$. If we pick N large enough such that $1/\sqrt{N+2} < \epsilon$ then for all $n \geq N$, $|f_n(x) - f_n(y)| < \epsilon$ is automatically satisfied. For the remaining $N-1$ terms i.e., f_1 to f_{N-1} , since each is uniformly continuous (Lipschitz, in particular, since the derivative of $f_n(x)$ is $n^n \sin(n^n x) \cos(n^n x) / \sqrt{n+2}$, which is finite), we can pick δ_n such that $|x - y| < \delta_n$ implies $|f_n(x) - f_n(y)| < \epsilon$. Define $\delta := \min\{\delta_1, \dots, \delta_{N-1}\}$ and we indeed have $|x - y| < \delta \implies |f_n(x) - f_n(y)| < \epsilon$ for all n . Hence the equicontinuity. \square

Problem 3 (Pugh, 4.22). Give an example of a sequence of smooth equicontinuous functions $f_n : [a, b] \rightarrow \mathbb{R}$ whose derivatives are not uniformly bounded.

Solution

Simply consider $\{f_n\}$ as mentioned in the previous problem. They are smooth because $\sin(x)$ is. However, the derivatives are not uniformly bounded (even though each one is finite):

$$f'_n(x) = \frac{2n^n \sin(n^n x) \cos(n^n x)}{\sqrt{n+2}}$$

which $\rightarrow \infty$ as $n \rightarrow \infty$ because n^n outgrows everything else.

Problem 4a. Let $C_{\text{per}}^0(\mathbb{R}, \mathbb{C})$ denote the subset of $C^0(\mathbb{R}, \mathbb{C})$ consisting of periodic functions. Define a map $\Phi : C^0(S^1, \mathbb{C}) \rightarrow C_{\text{per}}^0(\mathbb{R}, \mathbb{C})$ by

$$(\Phi(f))(\theta) = f(e^{2\pi i \theta}).$$

Prove that Φ is well-defined and bijective.

Proof. $\Phi(f)$ is clearly continuous as it is the composition of a continuous exponential function with a continuous $f \in C^0(S_1, \mathbb{C})$. It is periodic because $(\Phi(f))(\theta + n) = f(e^{2\pi i(\theta+n)}) = f(e^{2\pi i\theta} \cdot e^{2\pi i n}) = f(e^{2\pi i\theta})$.

For injectivity, notice that any $z \in S_1$ can be written as e^w , where $w = \log(z)$ with any logarithm function defined with a branch cut ρ not containing z . Write $w = a + bi$. Then $e^w = e^a e^{ib}$ and its modulus $|e^w| = |e^a| |e^{ib}| = |e^a|$. Since $z \in S^1$ we must have $|e^a| = 1$, of which the only real solution is $a = 0$. Therefore f, g agree on all points of form $e^{2\pi i\theta}$, $\theta \in \mathbb{R}$, i.e., $\Phi(f) = \Phi(g)$, they must agree, in particular, on all points in S^1 , since all points in S^1 are of this form. Thus Φ is injective.

For surjectivity, let $F \in C_{\text{per}}^0(\mathbb{R}, \mathbb{C})$ be given. Pick any $\theta \in \mathbb{R}$. We define a function $f : S^1 \rightarrow \mathbb{R}$ by $f(u + iv) = F(\theta)$ where $e^{2\pi i\theta} = u + iv$. It follows that f is well-defined for the periodicity of F , i.e., $F(\theta) = F(\theta + n)$, $n \in \mathbb{Z}$ not violated since $e^{2\pi i\theta} = e^{2\pi i(\theta+n)}$. It remains to show that f is continuous. Indeed, given $u + iv \in S^1$, consider the ray pointing towards the opposite direction, i.e., from the origin to $-u - iv$ (or any direction not containing $u + iv$). Then

$$f(u + iv) = F(\theta) = F((\log(u + iv))/2\pi i)$$

can be written as a composition of continuous functions ($f(z) = F \circ (\log(z)/2\pi i)$) and is therefore continuous on some open subset of $(\mathbb{C} \setminus \rho) \cap S^1 \subset S^1$. Thus, $f \in C^0(S^1, \mathbb{C})$ and by construction $\Phi(f) = F$, so Φ is surjective. \square

Problem 4b. Prove that Φ is linear and preserves the uniform norm.

Proof. Linearity follows from the fact that

$$\begin{aligned} \Phi(f_1 + \lambda f_2)(\theta) &= (f_1 + \lambda f_2)(e^{2\pi i\theta}) \\ &= f_1(e^{2\pi i\theta}) + \lambda f_2(e^{2\pi i\theta}) \\ &= \Phi(f_1(\theta)) + \lambda \Phi(f_2(\theta)). \end{aligned}$$

For preservation of uniform norm, let $f, g \in C^0(S^1, \mathbb{C})$. Suppose for some $z \in S^1$ we have $|f(z) - g(z)| = x$. If $z = 1$ or $z = -1$ then setting $\theta = 1$ and $\theta = 0.5$ would do the job, as $e^{2\pi i} = 1$ and $e^{\pi i} = -1$. Otherwise, by (a), there exists some purely imaginary number $\log(z)$ such that $e^{\log(z)} = z$. Setting $\theta := \log(z)/2\pi i$ gives our desired equality, namely $|f(z) - g(z)| = |f(e^{2\pi i\theta}) - g(e^{2\pi i\theta})|$. Therefore $\{|f(z) - g(z)| : z \in S^1\} \subset \{|f(e^{2\pi i\theta}) - g(e^{2\pi i\theta})| : \theta \in \mathbb{R}\}$. For the other direction (\supset), simply notice that $|e^{2\pi i\theta}| = 1$ for all $\theta \in \mathbb{R}$. Thus the two sets are equal. \square

Problem 4c. Show that $\langle \cdot, \cdot \rangle_2$ defined by

$$\langle f, g \rangle_2 := \int_0^1 \overline{f(\tilde{x})} g(\tilde{x}) d\tilde{x}$$

is a complex inner product on $C_{\text{per}}^0(\mathbb{R}, \mathbb{C})$, i.e., show that the following axioms are satisfied for $\langle \cdot, \cdot \rangle_2$:

- (1) $\langle f, g \rangle = \overline{\langle g, f \rangle}$ for all f, g ,
- (2) $\langle f_1 + f_2, g \rangle = \langle f_1, g \rangle + \langle f_2, g \rangle$ for all f_1, f_2, g ,
- (3) $\langle f, cg \rangle = c \langle f, g \rangle$ for all c, f, g , and
- (4) $\langle f, f \rangle$ is non-degenerate.

Proof. (1) follows from the fact that the conjugate of $\overline{f(x)}g(x)$ is $f(x)\overline{g(x)}$. (2) is because $((\overline{(f_1 + f_2)(x)})g(x))$ is the same as $\overline{f_1(x)}g(x) + \overline{f_2(x)}g(x)$. (3) is trivial. The “ ≥ 0 ” part of (4) is obvious as $\overline{f(x)}f(x)$ gives us the modulus of a complex number which is never negative. Now suppose $\langle f, f \rangle = 0$. Since f is continuous, so are its conjugate and their product $\overline{f}f$. If the integral of a nonnegative, continuous function evaluates to 0, then it must be the case that $\overline{f}f \equiv 0$ (otherwise there exists some interval (a, b) in which $f(x) \geq m$ for some m and all $x \in (a, b)$ by the property of continuity). Thus $f \equiv 0$. \square

Problem 4d. Show that $\{e^{2\pi in\theta: n \in \mathbb{Z}}\}$ is orthonormal.

Proof. If $m \neq n$, then

$$\langle e^{2\pi n\theta}, e^{2\pi m\theta} \rangle = \int_0^1 e^{-2\pi n\theta} e^{2\pi m\theta} d\theta = \int_0^1 e^{2\pi(m-n)\theta} d\theta = \int_0^1 0 d\theta = 0,$$

and if $m = n$, then $\langle e^{2\pi m\theta}, e^{2\pi n\theta} \rangle = \int_0^1 e^0 d\theta = 1$. \square

Problem 4e. Show that $\text{proj}_W(v) \in W$ and $v - \text{proj}_W(v) \in W^\perp$. Further show that this characterizes $\text{proj}_W(v)$, i.e., the orthogonal projection of v is unique.

Proof. The first part is trivial since the projection of v onto W is simply a linear combination of w_1, \dots, w_n . To show $v - \text{proj}_W(v) \in W^\perp$, it suffices to check that it is orthogonal to any basis of W . Pick any $w_i \in W$. Then,

$$\begin{aligned} \langle w_i, v - \text{proj}_W(v) \rangle &= \langle w_i, v \rangle - \langle w_i, \text{proj}_W(v) \rangle \\ &= \langle w_i, v \rangle - \langle w_1, v \rangle \langle w_i, w_1 \rangle - \dots - \langle w_n, v \rangle \langle w_i, w_n \rangle \\ &= \langle w_i, v \rangle - \langle w_i, w_i \rangle = 0. \end{aligned}$$

For uniqueness, suppose $v = v_1 + v_2 = v'_1 + v'_2$ with $v_1, v'_1 \in W$ and $v_2, v'_2 \in W^\perp$. Then $v_1 - v'_1 = v'_2 - v_2$, so

$$\|v_1 - v'_1\|^2 = \langle v_1 - v'_1, v_1 - v'_1 \rangle = \langle v_1 - v'_1, v'_2 - v_2 \rangle = 0$$

as the first component is in W and the second in W^\perp . Hence $v_1 = v'_1$ and likewise $v_2 = v'_2$. Uniqueness follows. \square

Problem 3f. Now show that $\text{proj}_W(v)$ is the closest element of W to v .

Proof. Let $w \in W$ be given. We can rewrite $v - w$ as $(v - \text{proj}_W(v)) + (\text{proj}_W(v) - w)$, where the first parenthesis represents an element of W^\perp and the second of W . Then,

$$\begin{aligned} \|v - w\|^2 &= \langle (\text{first}) + (\text{second}), (\text{first}) + (\text{second}) \rangle \\ &= \|v - \text{proj}_W(v)\|^2 + \|\text{proj}_W(v) - w\|^2 + 0 + \bar{0}. \end{aligned}$$

From this the original claim becomes clear, and we also see the $=$ can only be obtained when $w = \text{proj}_W(v)$. \square