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Problem 1. Let X be a compact metric space and let A = {a, } be a countable dense subset of X. For any ¢ > 0,
show that there exists M such that for any x € X, we have d(x,a;) < ¢ for some ¢ with i <i< M.
Proof. Let § >0 be given. By the denseness of A, for each x € X there exists some a; € A such that d(z,a;) < 9.
Therefore the countable union of §-balls centered at each a; € A covers X. Since X is compact, this open cover

admits a finite subcover which consists of §-balls centered at ap, ,@n,, ..., an,. Taking max{ny,...,nx} gives our

desired M and finishes the proof. O

Problem 2. Let f,, : R > R be defined by f,(z) = sin?(n"z)/v/n+2 for n > 1. Prove that the sequence {f,} is

equicontinuous.

Proof. Let f, be defined as above and let ¢ > 0 be given. Notice that for all z, 0 < sin®(n"z) < 1, so 0 <

fn(x) < 1//n+2. If we pick N large enough such that 1/»/N +2 < € then for all n. > N, |fn(z) = fn(y)| < €

is automatically satisfied. For the remaining N — 1 terms i.e., fi1 to fy_1, since each is uniformly continuous

(Lipschitz, in particular, since the derivative of f,(z) is n"sin(n"xz)cos(n"z)/\/n + 2, which is finite), we can

pick &, such that |z —y| < §; implies |f,(z) - fn(y)| < e. Define § := min{dy,...,dy-1} and we indeed have

|z —y|<d = |fn(x) - fu(y)| < € for all n. Hence the equicontinuity. O
Problem 3 (Pugh, 4.22). Give an example of a sequence of smooth equicontinuous functions f, : [a,b] > R whose
derivatives are not uniformly bounded.

Solution

Simply consider {f,} as mentioned in the previous problem. They are smooth because sin(x) is. However,

the derivatives are not uniformly bounded (even though each one is finite):

_ 2n"sin(n"z) cos(n"x)

vVn+2

which — oo as n — oo because n" outgrows everything else.

fu (@)

Problem 4a. Let CJ . (R,C) denote the subset of C°(R,C) consisting of periodic functions. Define a map
$:C°%(S',C) » CY.(R,C) by
(®())(8) = F(e*™).

Prove that ® is well-defined and bijective.
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Proof. ®(f) is clearly continuous as it is the composition of a continuous exponential function with a continuous
feC%(Sy,C). Tt is periodic because (®(f))(0 +n) = f(2T0Fm)) = (270 . 2minY = f(270)

For injectivity, notice that any z € S can be written as e", where w = log(z) with any logarithm function defined

i

e

with a branch cut p not containing z. Write w = a + bi. Then e® = e%® and its modulus |e*| = |e?|[e?’| = |e?|.

Since z € S! we must have |e?| = 1, of which the only real solution is a = 0. Therefore f, g agree on all points of
form 2™ 9 e R, i.e., ®(f) = ®(g), they must agree, in particular, on all points in S*, since all points in S* are
of this form. Thus ® is injective.

For surjectivity, let F € Cger(R, C) be given. Pick any § € R. We define a function f: S — R by f(u+iv) = F(6)
where €27 =y +jv. It follows that f is well-defined for the periodicity of F, i.e., F(#) = F(0 +n),n € Z not

violated since €270 = 2mi(0+n)

It remains to show to show that f is continuous. Indeed, given u +iv € S',
consider the ray pointing towards the opposite direction, i.e., from the origin to —u —iv (or any direction not

containing u + iv). Then
flu+iv) = F(0) = F((log(u +1iv))/2mi)

can be written as a composition of continuous functions (f(z) = F o (log(z)/27i)) and is therefore continuous on

some open subset of (C\ p)nSt c St Thus, f e C°(S?,C) and by construction ®(f) = F, so & is surjective. [

Problem 4b. Prove that & is linear and preserves the uniform norm.

Proof. Linearity follows from the fact that

O(f1+Af2)(0) = (f1 + Af2)(27)
_ fl(e27ri9) +)\f2(627m'9)
= 0(f1(0)) + A (f2(0)).

For preservation of uniform norm, let f,g € C°(S*,C). Suppose for some z € S' we have |f(2)-g(z)|==. If z=1
or z = -1 then setting # = 1 and § = 0.5 would do the job, as €™ = 1 and €™ = —1. Otherwise, by (a), there exists
some purely imaginary number log(z) such that e'°8(*) = 2. Setting 6 := log(z)/27i gives our desired equality,
namely |£(2) - g(2)| = [ (e27%) - (7). Therefore {|f(2) - g(=)|: = € §} € {|f(e27) - g(¢>¥)|: 0 € R}. For
the other direction (), simply notice that [e2™®| = 1 for all # € R. Thus the two sets are equal. O

Problem 4c. Show that (-,-), defined by

(fi9)y = folmg(f) di

is a complex inner product on C9,, (R,C), i.e., show that the following axioms are satisfied for (-,+),:

per

(f.9) =g, f) for all f,g,
(fl +f27g> = <.f1ag) + (f27g> for all f17f27ga

(f,eg) =c(f,g) for all ¢, f, g, and

(f,f) is non-degenerate.
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Proof. (1) follows from the fact that the conjugate of f(x)g(x) is f(x)g(x). (2) is because ((f1 + f2)(x))g(x)
is the same as f1(z)g(x) + fo(x)g(x). (3) is trivial. The “> 0” part of (4) is obvious as f(z)f(z) gives us the

modulus of a complex number which is never negative. Now suppose (f, f) = 0. Since f is continuous, so are

its conjugate and their product ff. If the integral of a nonnegative, continuous function evaluates to 0, then it

must be the case that ff =0 (otherwise there exists some interval (a,b) in which f(z) > m for some m and all

x € (a,b) by the property of continuity). Thus f = 0. O
Problem 4d. Show that {*™™"%7<Z} is orthornormal.

Proof. If m # n, then

1 1 1
(627”1(97 eQﬂ'mG) _ / 6—27Tn9627rm0 do = [ 627r(m—n)6 4o = f 0de = 0,
0 0 0

1
and if m =n, then (627”"9,62”"9) = f e?do=1. O
0

Problem 4e. Show that projy, (v) € W and v — projy, (v) € W*. Further show that this characterizes projy, (v),
i.e., the orthogonal projection of v is unique.
Proof. The first part is trivial since the projection of v onto W is simply a linear combination of w,...,w,. To

show v — projy, (v) € W+, it suffices to check that it is orthogonal to any basis of W. Pick any w; € W. Then,

(wi, v = projy (v)) = (w;, v) = (wi, projy (v))
= (wi’v> - <w1av> <wi7w1> T <’LUn,’U) (wlvwn)

= (w;,v) — (w;, w;) = 0.
For uniqueness, suppose v = vy + vy = v] + v5 with vy,v] € W and vq,2" € W*. Then vy — v} = v} — va, SO
12 / 14 / /
lvr = v " = (v1 =01, 01 —v}) = (o1 — vy, 05 —v2) =0

as the first component is in W and the second in W*. Hence v; = v] and likewise vy = v4. Uniqueness follows. O
Problem 3f. Now show that projy, (v) is the closest element of W to v.

Proof. Let w e W be given. We can rewrite v —w as (v —projy, (v)) + (projy, (v) —w), where the first parenthesis

represents an element of W* and the second of W. Then,

v —w|? = ((first) + (second), (first) + (second))

= v = proju (v)[* + [proju (v) — w[* + 0 +0.

From this the original claim becomes clear, and we also see the = can only be obtained when w = projy, (v). O



