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Problem 1. Let X be a compact metric space and let A = {an} be a countable dense subset of X. For any δ > 0,

show that there exists M such that for any x ∈X, we have d(x, ai) < δ for some i with i ⩽ i ⩽M .

Proof. Let δ > 0 be given. By the denseness of A, for each x ∈X there exists some ai ∈ A such that d(x, ai) < δ.

Therefore the countable union of δ-balls centered at each ai ∈ A covers X. Since X is compact, this open cover

admits a finite subcover which consists of δ-balls centered at an1 , an2 , . . . , ank
. Taking max{n1, . . . , nk} gives our

desired M and finishes the proof.

Problem 2. Let fn ∶ R → R be defined by fn(x) = sin2(nnx)/
√
n + 2 for n ⩾ 1. Prove that the sequence {fn} is

equicontinuous.

Proof. Let fn be defined as above and let ϵ > 0 be given. Notice that for all x, 0 ⩽ sin2(nnx) ⩽ 1, so 0 ⩽

fn(x) ⩽ 1/
√
n + 2. If we pick N large enough such that 1/

√
N + 2 < ϵ then for all n ⩾ N , ∣fn(x) − fn(y)∣ < ϵ

is automatically satisfied. For the remaining N − 1 terms i.e., f1 to fN−1, since each is uniformly continuous

(Lipschitz, in particular, since the derivative of fn(x) is nn sin(nnx) cos(nnx)/
√
n + 2, which is finite), we can

pick δn such that ∣x − y∣ < δi implies ∣fn(x) − fn(y)∣ < ϵ. Define δ ∶= min{δ1, . . . , δN−1} and we indeed have

∣x − y∣ < δ Ô⇒ ∣fn(x) − fn(y)∣ < ϵ for all n. Hence the equicontinuity.

Problem 3 (Pugh, 4.22). Give an example of a sequence of smooth equicontinuous functions fn ∶ [a, b]→ R whose

derivatives are not uniformly bounded.

Solution

Simply consider {fn} as mentioned in the previous problem. They are smooth because sin(x) is. However,

the derivatives are not uniformly bounded (even though each one is finite):

f ′n(x) =
2nn sin(nnx) cos(nnx)√

n + 2

which →∞ as n→∞ because nn outgrows everything else.

Problem 4a. Let C0
per(R,C) denote the subset of C0(R,C) consisting of periodic functions. Define a map

Φ ∶ C0(S1,C)→ C0
per(R,C) by

(Φ(f))(θ) = f(e2πiθ).

Prove that Φ is well-defined and bijective.
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Proof. Φ(f) is clearly continuous as it is the composition of a continuous exponential function with a continuous

f ∈ C0(S1,C). It is periodic because (Φ(f))(θ + n) = f(e2πi(θ+n)) = f(e2πiθ ⋅ e2πin) = f(e2πiθ).

For injectivity, notice that any z ∈ S1 can be written as ew, where w = log(z) with any logarithm function defined

with a branch cut ρ not containing z. Write w = a + bi. Then ew = eaeib and its modulus ∣ew ∣ = ∣ea∣∣eib∣ = ∣ea∣.

Since z ∈ S1 we must have ∣ea∣ = 1, of which the only real solution is a = 0. Therefore f, g agree on all points of

form e2πiθ, θ ∈ R, i.e., Φ(f) = Φ(g), they must agree, in particular, on all points in S1, since all points in S1 are

of this form. Thus Φ is injective.

For surjectivity, let F ∈ C0
per(R,C) be given. Pick any θ ∈ R. We define a function f ∶ S1 → R by f(u+ iv) = F (θ)

where e2πiθ = u + iv. It follows that f is well-defined for the periodicity of F , i.e., F (θ) = F (θ + n), n ∈ Z not

violated since e2πiθ = e2πi(θ+n). It remains to show to show that f is continuous. Indeed, given u + iv ∈ S1,

consider the ray pointing towards the opposite direction, i.e., from the origin to −u − iv (or any direction not

containing u + iv). Then

f(u + iv) = F (θ) = F ((log(u + iv))/2πi)

can be written as a composition of continuous functions (f(z) = F ○ (log(z)/2πi)) and is therefore continuous on

some open subset of (C∖ρ)∩S1 ⊂ S1. Thus, f ∈ C0(S1,C) and by construction Φ(f) = F , so Φ is surjective.

Problem 4b. Prove that Φ is linear and preserves the uniform norm.

Proof. Linearity follows from the fact that

Φ(f1 + λf2)(θ) = (f1 + λf2)(22πiθ)

= f1(e2πiθ) + λf2(e2πiθ)

= Φ(f1(θ)) + λΦ(f2(θ)).

For preservation of uniform norm, let f, g ∈ C0(S1,C). Suppose for some z ∈ S1 we have ∣f(z)−g(z)∣ = x. If z = 1

or z = −1 then setting θ = 1 and θ = 0.5 would do the job, as e2πi = 1 and eπi = −1. Otherwise, by (a), there exists

some purely imaginary number log(z) such that elog(z) = z. Setting θ ∶= log(z)/2πi gives our desired equality,

namely ∣f(z)− g(z)∣ = ∣f(e2πiθ)− g(e2πiθ)∣. Therefore {∣f(z)− g(z)∣ ∶ z ∈ S1} ⊂ {∣f(e2πiθ)− g(e2πiθ)∣ ∶ θ ∈ R}. For

the other direction (⊃), simply notice that ∣e2πiθ ∣ = 1 for all θ ∈ R. Thus the two sets are equal.

Problem 4c. Show that ⟨⋅, ⋅⟩2 defined by

⟨f, g⟩2 ∶= ∫
1

0
f(x̃)g(x̃) dx̃

is a complex inner product on C0
per(R,C), i.e., show that the following axioms are satisfied for ⟨⋅, ⋅⟩2:

(1) ⟨f, g⟩ = ⟨g, f⟩ for all f, g,

(2) ⟨f1 + f2, g⟩ = ⟨f1, g⟩ + ⟨f2, g⟩ for all f1, f2, g,

(3) ⟨f, cg⟩ = c ⟨f, g⟩ for all c, f, g, and

(4) ⟨f, f⟩ is non-degenerate.
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Proof. (1) follows from the fact that the conjugate of f(x)g(x) is f(x)g(x). (2) is because ((f1 + f2)(x))g(x)

is the same as f1(x)g(x) + f2(x)g(x). (3) is trivial. The “⩾ 0” part of (4) is obvious as f(x)f(x) gives us the

modulus of a complex number which is never negative. Now suppose ⟨f, f⟩ = 0. Since f is continuous, so are

its conjugate and their product ff . If the integral of a nonnegative, continuous function evaluates to 0, then it

must be the case that ff ≡ 0 (otherwise there exists some interval (a, b) in which f(x) ⩾m for some m and all

x ∈ (a, b) by the property of continuity). Thus f ≡ 0.

Problem 4d. Show that {e2πinθ∶n∈Z} is orthornormal.

Proof. If m ≠ n, then

⟨e2πnθ, e2πmθ⟩ = ∫
1

0
e−2πnθe2πmθ dθ = ∫

1

0
e2π(m−n)θ dθ = ∫

1

0
0 dθ = 0,

and if m = n, then ⟨e2πmθ, e2πnθ⟩ = ∫
1

0
e0 dθ = 1.

Problem 4e. Show that projW (v) ∈ W and v − projW (v) ∈ W ⊥. Further show that this characterizes projW (v),

i.e., the orthogonal projection of v is unique.

Proof. The first part is trivial since the projection of v onto W is simply a linear combination of w1, . . . ,wn. To

show v − projW (v) ∈W ⊥, it suffices to check that it is orthogonal to any basis of W . Pick any wi ∈W . Then,

⟨wi, v − projW (v)⟩ = ⟨wi, v⟩ − ⟨wi,projW (v)⟩

= ⟨wi, v⟩ − ⟨w1, v⟩ ⟨wi,w1⟩ − ⋅ ⋅ ⋅ − ⟨wn, v⟩ ⟨wi,wn⟩

= ⟨wi, v⟩ − ⟨wi,wi⟩ = 0.

For uniqueness, suppose v = v1 + v2 = v′1 + v′2 with v1, v
′
1 ∈W and v2,2

′ ∈W ⊥. Then v1 − v′1 = v′2 − v2, so

∥v1 − v′1∥2 = ⟨v1 − v′1, v1 − v′1⟩ = ⟨v1 − v′1, v′2 − v2⟩ = 0

as the first component is in W and the second in W ⊥. Hence v1 = v′1 and likewise v2 = v′2. Uniqueness follows.

Problem 3f. Now show that projW (v) is the closest element of W to v.

Proof. Let w ∈W be given. We can rewrite v−w as (v−projW (v))+ (projW (v)−w), where the first parenthesis

represents an element of W ⊥ and the second of W . Then,

∥v −w∥2 = ⟨(first) + (second), (first) + (second)⟩

= ∥v − projW (v)∥2 + ∥projW (v) −w∥2 + 0 + 0.

From this the original claim becomes clear, and we also see the = can only be obtained when w = projW (v).
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