HOMEWORK, WEEK 8

This assignment is due Monday, March 15 in lecture. Handwritten solutions are acceptable
but LaTeX solutions are preferred. You must write in full sentences (abbreviations and
common mathematical shorthand are fine).

In this problem set we will continue our exploration of Fourier series.

(1) Recall the following definitions from the end of the previous problem set: for f €
C° (R,C) and k € Z, define the n-the Fourier coefficient of f to be

per

~

f(n) = (en, f)2= /0 e~2mn0 £(6)de.

The Fourier series of f = f(0) is the doubly infinite series

Y fmea®)= Y fm)em.

n=—o00 n=-—00

In more detail, for N, M > 0 the (N, M) partial sum of the Fourier series is defined

to be
N A
Z f(n)em
n=—M

which is the projection of f onto span{e_ps, e_pri1,...,en—1,enx} C C’ger(R, C). Con-
vergence of this series (pointwise, uniformly, or in L?) is defined by considering the
set of pairs (IV, M) to be a directed set with (Ny, M) < (Ng, M) if Ny < Ny and
M; < M,. In other words, for each € > 0 there exists (N, M) such that for n > N
and m > M, the appropriate e-condition is satisfied for Y ,_ f (k)ex.

Problem. Prove that for f € CJ.,(R,C), the Fourier series of f converges to f in
the L? norm.

Hint: Given ¢, using the Stone-Weierstrass theorem, find an element p of A :=
span{--- ,e_g,€_1,€p, €1, €, - - - } that is close enough to f in the norm || - ||syp (make
sure you check the conditions of the theorem, and figure out “close enough” at the
end of the proof). Since p is a finite linear combination of the functions e,,, there exist
N, M such that p is in span{e_ps,e_pri1,- -+ ,en_1,en}, which itself is contained in

Span{e—ma €-m+1, """ ,Cn-1, en}

for any n > N, m > M. For such n and m, try to bound the L? norm of f —

~

oo f(k)ey, and fix “close enough” earlier in the proof accordingly.

It follows that the exponential functions {e,},ez form an orthonormal basis (in

the analytic sense) for CP, (R, C) with the L* inner product.
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Remark. The metric space (CJ,.(R,C),d;2) is not complete, so it is not a Hilbert
space (if you want, try to find a sequence of continuous functions converging in L?
to a discontinuous function). A sign of this incompleteness is that not all square-
summable sequences of complex numbers arise as the Fourier coefficients of a contin-

uous function.

The more natural setting for L? convergence of Fourier series is the Hilbert space
L*(S1,C) of functions f : S' — C with |f|? Lebesgue integrable, modulo almost-
everywhere equality. This Hilbert space contains C9.(R,C) as a (dense) subspace.
The standard proofs of L? convergence work with this space, and thus do not use
continuity or the Stone-Weierstrass theorem (which is about continuous functions).
Like any (infinite-dimensional separable) Hilbert space over C, L?*(S*, C) is isomor-
phic to the space * of square-summable sequences of complex numbers (this result is
an analogue of the fact “all n-dimensional vector spaces over R or C are isomorphic

to R” or C*” when n = 00).

Let f € Cp (R, C), which we can identify with C°(S*,C) as in last week’s problem
set. For n € Z, recall that

~

1

f) = {en £yn = [ e s
0

is the n'* Fourier coefficient of f.

Problem. Prove that the doubly infinite series of real numbers S°° | f(n)[* con-
verges, with limit equal to || f||7..

Hint: For given integers M, N > 0, let Sy n(f) denote the partial sum of the
Fourier series of f from —M to N, an element of C) (R, C). Show that Sa,n(f) and
f — Su.n(f) are orthogonal (i.e. their inner product is zero); conceptually, it might
help to write Sy n(f) as an orthogonal projection of f onto a finite-dimensional

subspace of C?_ (R, C) as in last week’s homework. Deduce that

per

1£1Z2 = [1f = San (D72 + [1Sarv (HIZ2.

Show that || Sy n(f)||72 is a partial sum of the real-number series » 2 1F(n)]2,
which you want to show converges to ||f]|3.. Now, given ¢, use L? convergence
to show that there exist M, N such that for m > M and n > N, the quantity
1Shn (f)]22 is closer than € to || f||3,.

Remark. This result is known as Parseval’s identity, and it holds more generally
when f is any element of L?(S*,C) (i.e. when f is Lebesgue square-integrable on S').
Let E(ZC denote the C-vector space of doubly-infinite sequences {a,, },cz where a,, € C
and >°7 _ |a,|* < oo (such sequences are called “square-summable”). There is an
inner product (-,-);2 on €% defined by ((ay), (by))e := D> oo dnby, (the inequality
|anbn] < (1/2)(Jan|? + |bn]?) ensures this is well-defined).

By the above problem, if f € C°(S,C), then {f(n)}nez € €%, so we have a linear
transformation

F: S, C) — (2
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sending f to {f(n)}>>__.. The transformation F is injective but not surjective (as

mentioned on the previous problem set). The corresponding linear transformation
F:L*(S',C) — 12

is an isomorphism. Parseval’s identity says that F preserves L? norms, in the sense

that || F(f)|lez = || f]|z2 (this holds for all f € L?(S*,C)). By the polarization identity

for complex inner product spaces, it follows that F preserves L? inner products, in

the sense that (F(f), F(g))e = (f,g)re for all f,g € L*(S',C).

Abstractly, you can think of ¢ as L*(Z, C) where Z is equipped with the “counting
measure” (measure of a set := its cardinality). In fact, both S* and Z are (locally
compact) topological abelian groups, and there exists a duality G <> G (“Pontryagin
duality”) for such groups. In general, there is a Fourier transform relatlng functions
on G with functions on G. In the case we’ve been considering, we have Sl = Z (and
7 =25 1), so functions on Z should correspond to functions on S*, and this is true at
least for L? functions. Fourier transforms for non-periodic functions arise from the
Pontryagin duality relationship R =R.

Problem. Show that if f € C°(S!, C) (or equivalently CP..(R,C)), then
lim f(n)=

n—too

Hint: The idea is that this result should follow from the fact that > >~ | f(n)?
converges, so its general term approaches zero. Since the series are doubly infinite,
though, it’s best to give a brief argument that the general term of a doubly infinite
series tends to zero as n — oo and as n — —oo (you can probably just say the
n — —oo case is analogous to the n — oo case to avoid duplication but you should
do the n — oo case).

Remark. This result holds with the same proof for f € L?(S!,C). Less trivially,
it also holds for f € L'(S!,C), where it is known as the Riemann-Lebesgue lemma
for Fourier series (the more standard Riemann-Lebesgue lemma is for Fourier trans-
forms). Since this result is what most people think when you say “Riemann—Lebesgue
lemma,” I prefer saying “Lebesgue’s criterion for Riemann integrability” when refer-
ring to Theorem 23 in Section 3.2 of Pugh.

Define f € CD.(R,C) by setting f(z) = (1/2 — x)* for z € [0,1] and extending f
periodically to all of R (since f is continuous on [0,1] and f(0) = f(1) = 1/4, the
periodic extension of f is continuous on all of R).

Problem. Compute the Fourier coefficients f(n) for all n € Z, and write down the
corresponding Fourier series as a doubly infinite sum of exponentials. Rewrite the
series as a singly infinite sum of cosines.

Hint: this is an integration exercise; it’s important to be able to work with Fourier
series concretely. Treat the cases n = 0 and n # 0 separately, using integration by
parts twice when n # 0. To rewrite the series in terms of cosines, try combining
terms n and —n for n # 0 and using identities relating cosines and exponentials.
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Remark. This Fourier series converges to f in L? by what we’ve proved; you’ll show
uniform convergence in the next problem. It might be informative to draw the graph
of f as a periodic function; it looks a bit like the usual sketch one might draw for water
waves. If f(z) represents a sound wave (f(x) = air pressure at some given point at
time z), then the coefficients of the cosine functions represent the amplitudes of the
“partials” present in the sound. This phenomenon should be familiar to musicians.

Now we consider absolute convergence of Fourier series, which is a relatively strong
condition.

Problem. Let [ € C},(R,C) and suppose that Y ° |f(n)| converges (this is
the series of absolute values for S°° _ f(n)e?™n*). Prove that the Fourier series

n=—oo

of f converges uniformly to f. Deduce that the Fourier series of f(z) = (1/2 — x)?
converges uniformly to f.

Hint: First use the Weierstrass M-test to show that the Fourier series converges
absolutely uniformly (and thus uniformly to some function g). It’s good to mention
that the M-test extends without issue to the case of doubly infinite series (you don’t
have to prove this here, though). Then use L? convergence of Fourier series and
uniqueness of limits in metric spaces; make sure to give the appropriate details.



