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Problem 1

Prove that for f ∈ C0
per(R,C), the Fourier series of f converges to f in the L2 norm.

Proof. Define A ∶= span{e2πinx, n ∈ Z}. Since A is a C-function algebra (with conjugation∑ e2πinx =∑ e−2πinx),
vanishes nowhere (exponential functions are never 0), and separates points (e2πix has period 1) between [0,1],
by the Stone-Weierstraß Theorem it is dense in (C0

per(R,C), ∥ ⋅ ∥sup).
Let f ∈ C0

per(R,C) be given. We can then find g ∈ A, a linear combination of en’s, such that ∥f − g∥sup < ϵ. Note
that this linear combination is finite; the indices of the en’s are bounded by some −M and N where M,N ∈ N.
Since g may or may not be the orthogonal projection of f onto span{e−M , . . . , eN} (so that ∥f −g∥∞ may or may
not be minimized), we have

∥f −
N

∑
k=−M

f̂(k)ek∥ ⩽ ∥f − g∥sup <
√
ϵ.

The same holds for any m ⩾ M and n ⩾ N , as g may or may not be the orthogonal projection of f onto
span{e−m, . . . , e−M , . . . , eN , . . . , en}. Therefore, for all (m,n) with (M,N) ⪯ (m,n), we have

∥f −
n

∑
k=−m

f̂(k)ek∥
L2
= (∫

1

0
∣f(x̃) −

n

∑
k=−m

f̂(k)ek(x̃)∣
2

dx̃)
1/2

⩽ (∫
1

0
∣f(x̃) − g(x̃)∣2 dx̃)

1/2

< (∫
1

0
ϵ2 dx̃)

1/2
= ϵ,

and thus the Fourier series of f converges to f in the L2 norm.

Problem 2

Let f ∈ C0
per(R,C), which we can identify with C0(S1,C). For n ∈ Z, recall that

f̂(n) = ⟨en, f⟩L2 ∶= ∫
1

0
f(x)e−2πinx̃ dx̃

is the nth Fourier coefficient of f . Prove that the doubly infinite series of real numbers
∞
∑

n=−∞
∣f̂(n)∣2 converges,

with limit equal to ∥f∥2L2 .
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Proof. Recall that {en} is orthonormal and so are its subsets. If we define Sn(f) ∶=
n

∑
k=−n

f̂(k)ek, then it becomes

clear that Sn(f) is the orthogonal projection of f onto span{e−n, . . . , en}. Therefore by the previous problem
set we immediately know f − Sn(f) is orthogonal to Sn(f). Notice that

∥f∥2L2 = ⟨f, f⟩L2 = ⟨f − Sn(f) + Sn(f), f − Sn(f) + Sn(f)⟩L2

= ⟨f − Sn(f), f − Sn(f)⟩L2 + ⟨Sn(f), Sn(f)⟩L2 + 2Re ⟨f − Sn(f), f⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0= ∥f − Sn(f)∥2L2 + ∥Sn(f)∥2L2 .

From problem 1, we know that, given ϵ > 0, there exists N ∈ N sufficiently large such that ∥f − Sn(f)∥2L2 < ϵ

whenever n ⩾ N . When this happens, the equation above suggests ∥f∥2L2 − ϵ < ∥Sn(f)∥2L2 < ∥f∥2L2 . Therefore as
n→∞ we have ∥Sn(f)∥2L2 → ∥f∥2L2 . On the other hand, by generalized Pythagorean Theorem,

∥Sn(f)∥2L2 = ∥
n

∑
k=−n

f̂(k)ek∥ = ⟨
n

∑
k=−n

f̂(k)ek,
n

∑
k=−n

f̂(k)ek⟩
L2

=
n

∑
j=−n

n

∑
m=−n

f̂(j)f̂(m) ⟨ej , em⟩L2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=δ(j,m)

=
n

∑
j=−n

f̂(j)2 =
n

∑
j=−n
∣f̂(j)∣2,

and letting n→∞ gives ∥Sn(f)∥2L2 =
∞
∑

n=−∞
∣f̂(n)∣2. Therefore the two must equal, i.e.,

∞
∑

n=−∞
∣f̂(n)∣2 = ∥f∥2L2 . (Parseval’s Identity)

Problem 3

Show that if f ∈ C0(S1,C) then
lim

n→±∞
f̂(n) = 0.

Proof. Since each ∣f̂(n)∣2 ⩾ 0 and
∞
∑

n=−∞
∣f̂(n)∣2 converges, do do

−∞
∑
n=0
∣f̂(n)∣2 and

∞
∑
n=1
∣f̂(n)∣2. Therefore

lim
n→±∞

∣f̂(n)∣2 = 0 Ô⇒ lim
n→±∞

∣f̂(n)∣ = 0.

Problem 4

Define f ∈ C0
per(R,C) by setting f(x) = (1/2 − x)2 for x ∈ [0,1] and extending f periodically to all or R.

Compute the Fourier coefficients f̂(n) for all n ∈ Z and write down the corresponding Fourier series as a
doubly infinite sum of exponentials. Rewrite the series as a single infinite sum of cosines.
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Solution

If n = 0, f̂(n) is simply

∫
1

0
e0(1/2 − θ)2 dθ = −1

3
(1/2 − θ)3∣

1

θ=0
= 1

12
.

Before computing f̂(n) for nonzero n’s, we first compute the indefinite integral ∫ e−2πinθf(θ) dθ.

∫ e−2πinθ(1/2 − θ)2 dθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u = (1/2 − θ)2 du = (2θ − 1)dθ

dv = e−2πinθdθ
v = e−2πinθ/(−2πin)
= ie−2πinθ/(2πn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ie−2πinθ

2πn
(1/2 − θ)2 − ∫

ie−2πinθ

2πn
(2θ − 1) dθ.

Now we apply integration by parts again to the new integral:

∫
ie−2πinθ

2πn
dθ = i

2πn
∫ e−2πinθ(2θ − 1) dθ

⎡⎢⎢⎢⎢⎣

u = 2θ − 1 du = 2dθ
dv = e−2πinθdθ v = ie−2πinθ/(2πn)

⎤⎥⎥⎥⎥⎦

= i

2πn
[ ie

−2πinθ

2πn
(2θ − 1) − ∫

2i

2πn
e−2πinθ dθ]

= i

2πn
[ ie

−2πinθ

2πn
(2θ − 1) − i

πn
⋅ ie
−2πinθ

2πn
]

= −e
−2πinθ

4π2n2
(2θ − 1) + ie−2πinθ

4π3n3
.

Therefore,

∫ e−2πinθ(1/2 − θ)2 dθ = ie−2πinθ

2πn
(1/2 − θ)2 + e−2πinθ

4π2n2
(2θ − 1) − ie−2πinθ

4π3n3
.

Evaluating this at ∣
1

θ=0
, we obtain

f̂(n) = ∫
1

0
e−2πinθ(1/2 − θ)2 dθ = ie−2πin

8πn
+ e−2πin

4π2n2
− ie−2πin

4π3n3
− i

8πn
+ 1

4π2n2
+ i

4π3n3

= e−2πin [ i

8πn
+ 1

4π2n2
− i

4π3n3
] − i

8πn
+ 1

4π2n2
+ i

4π3n3
.
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To compute the Fourier series, we compute f̂(n)e2πinθ with f̂(−n)e−2πinθ together:

f̂(n)en + f̂(−n)e−n = [
i

8πn
− i

4π3n3
] (e2πin(θ−1) − e−2πin(θ−1))

+ 1

4π2n2
(e2πin(θ−1) + e−2πin(θ−1))

+ 1

4π2n2
(e2πinθ + e−2πinθ)

− [ i

8πn
− i

4π3n3
] (e2πinθ − e−2πinθ)

= 2i [ i

8πn
− i

4π3n3
] [ sin(2πn(θ − 1)) − sin(2πnθ)]

+ 2

4π2n2
[ cos(2πn(θ − 1)) + cos(2πnθ)]

= [ 1

2π3n3
− 1

4πn
] [ sin(2πn(θ − 1)) − sin(2πnθ)]

+ 2

4π2n2
[ cos(2πn(θ − 1)) + cos(2πnθ)]

= 2

4π2n2
⋅ 2 cos(2πnθ) = cos(2πnθ)

π2n2
.

Therefore, the Fourier series is simplified to

f(θ) = 1

12
+
∞
∑
n=1

cos(2πnθ)
π2n2

.

This series is itself 1-periodic, and we are done.

Problem 5

Let f ∈ C0
per(R,C) and suppose that

∞
∑

n=−∞
∣f̂(n)∣ converges. Prove that the Fourier series of f converges

uniformly to f . Deduce that the Fourier series of f(x) = (1/2 − x)2 converges uniformly to f .

Proof. By the hint, we consider the Weierstraß M-test. Notice that

∥
n

∑
k=−n

f̂(k)ek∥ ⩽
n

∑
k=−n
∥f̂(k)ek∥ =

n

∑
k=−n
∣f̂(k)∣∥ek∥ =

n

∑
k=−n
∣f̂(k)∣.

The one on the RHS is convergent by assumption, so the Fourier series converges absolutely uniformly. By the
first problem we know Sn(f) → f in ∥ ⋅ ∥L2 . By the uniqueness of limit, it follows that the Fourier series must
converge uniformly to f .
As an application of what is shown above, f ∈ C0

per(R,C), should have a convergent series of Fourier coefficients.
I must have missed some important details when attempting to simplify the Fourier coefficients. Prof. Manion
gave me the reference of the problem after I correctly computed the Fourier series in an overcomplicated way, but

the source omitted the integration. I know that here he wanted me to use the fact that
∞
∑

n=−∞
∣f̂(n)∣ <∞ which leads

to uniform convergence of the Fourier series. Unfortunately I cannot achieve such goal using my method.
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