
HOMEWORK, WEEK 9

This assignment is due Monday, March 22. Handwritten solutions are acceptable but
LaTeX solutions are preferred. You must write in full sentences (abbreviations and common
mathematical shorthand are fine).

(1) Let U be an open subset of Rm and let F : U → Rm be Lipschitz. Let (a, b) and (a′, b′)
be open intervals of R, each containing t0. Let γ : (a, b) → U and ζ : (a′, b′) → U
be differentiable functions such that γ′ = F (γ), ζ ′ = F (ζ), and γ(t0) = ζ(t0). Prove
that γ(t) = ζ(t) for all t ∈ (a, b) ∩ (a′, b′).

See the end of this problem set for an extended remark on this problem.

Hint : This is a stronger version of the uniqueness statement in the Picard–Lindelöf
theorem. Let

s = sup{t ∈ (a, b) ∩ (a′, b′) | γ(t′) = ζ(t′) for t0 ≤ t′ ≤ t}.
Assuming s < min(b, b′), try to derive a contradiction as follows. First show that
γ(s) = ζ(s) (it’s helpful that the set of t where γ(t) = ζ(t) is closed- why is this
true?). Then apply Picard’s theorem to the functions γ(t + s) and ζ(t + s), which
have the same initial value at t = 0, and try to derive a contradiction. A parallel
argument should show that γ(t) = ζ(t) for all t ∈ (max(a, a′), t0] (you can just say
this without writing everything out twice).

(2) Pugh, Exercise 4.35. You should find an explicit formula for the solution, valid on
some open neighborhood of zero; this explicit formula will let you answer the rest of
the question.

Hint: The equation x′ = x2 is separable, meaning that we can rearrange to get all
instances of x and its derivatives on the left, and all “unbound” instances of t on the
right (e.g. x′ = tx2 is also separable, but x′ = etx is not).

To find the solution, don’t worry about rigor at first- just use optimistic calculus
manipulations to guess the formula, and then prove it’s valid afterwards. To find the

guess, rewrite the equation as x′(t)
x(t)2

= 1, integrate both sides with respect to t, and

use substitution on the left. The indefinite integration produces a constant C, and
you can determine C using x0. The resulting formula might have some instances of
x0 in denominators; by multiplying through, you can clear these and get a formula
that should work even when x0 = 0.

Now that you have your explicit formula, check rigorously that it’s a solution
with initial value x0. Define its domain explicitly (should be an open neighborhood
of zero), compute its derivative to show the equation is satisfied (differentiability
follows from the formulas you’re using), and compute that the initial value is x0.

Finally, to answer the last question of the problem, let (a, b) be the explicit domain
you defined for your solution (the largest possible while remaining connected). You
will have a = −∞ and b < ∞ or the other way around. In the first case, compute
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that x(t) → ∞ as t → b−, so that the solution blows up in finite time. The second
case is similar (you don’t have to write it out again).

Remark. The statement of the Picard–Lindelöf theorem in the book immediately
implies the following, more local version: if F : U → Rm satisfies a local Lipschitz
condition, in the sense that for all p ∈ U , there exists an open neighborhood V of p
(contained in U) such that F |V is Lipschitz, then the conclusions of the theorem hold
(just replace U with V everywhere in the proof; the conclusions are local and are thus
unchanged). It is also true (but requires an additional argument) that if U = Rm

and F : Rm → Rm has a (global) Lipschitz constant, then solutions to γ′ = F (γ)
exist for all time. However, even if U = Rm (as in the previous problem), if F is only
locally Lipschitz (e.g. F (x) = x2 on R1), then solutions to γ′ = F (γ) might blow
up in finite time. One can show the solutions (defined on their maximal interval of
existence) must leave every compact subset K of U (e.g. K = a rectangle in R2), but
they might “leave to the top or bottom” instead of “leaving to the right or left.”

(3) An important operation in Fourier analysis is convolution, e.g. of periodic functions
f, g ∈ C0

per(R,C). This operation can be understood abstractly as follows: the map

f 7→ (f̂(n))∞n=−∞ is an injective C-linear map from C0
per(R,C) to `2C that preserves

inner products (exercise if you want: use L2 convergence to prove the map is injec-
tive). However, both C0

per(R,C) and `2C have “function multiplication” (f, g 7→ fg in

the first case, (an), (bn) 7→ (anbn) in the second case. Our map f 7→ (f̂(n))∞n=−∞ does

not preserve function multiplication; we do not have f̂ g(n) = f̂(n)ĝ(n).

However, this is a feature, not a bug: we can use the map f 7→ (f̂(n))∞n=−∞ to define
a new type of multiplication for functions f, g ∈ C0

per(R,C). Namely, given f and g,

we can take their sequences (f̂(n)), (ĝ(n)) of Fourier coefficients, multiply these to get

(f̂(n)ĝ(n))∞n=−∞, and reconstruct a new function f ∗ g(x) :=
∑∞

n=−∞ f̂(n)ĝ(n)e2πinx

(at least once we check the details). Similarly, given sequences (an) and (bn), heuristi-
cally we can construct f(x) =

∑∞
n=−∞ ane

2πinx and g(x) =
∑∞

n=−∞ bne
2πinx, multiply

to get fg, and then define the convolution (an) ∗ (bn) to be (f̂ g(n)). (In general,
one can define convolution for appropriate functions on locally compact topological
abelian groups G, by using the Fourier transform relating functions on G to functions
on its Pontryagin dual Ĝ).

It turns out that this roundabout way of defining convolution is equivalent to a
more direct way:

Definition. For f, g ∈ C0
per(R,C), define f ∗ g ∈ C0

per(R,C) by

(f ∗ g)(x) =

∫ 1

0

f(y)g(x− y)dy.

For (an)∞n=−∞, (bn)∞n=−∞ ∈ `2C define

(an) ∗ (bn) =

(
∞∑

k=−∞

akbn−k

)∞
n=−∞

.
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You may assume that both types of convolution operations give well-defined ele-
ments of C0

per(R,C) and of `2C respectively. It’s a good integration exercise to check
that f ∗ g = g ∗ f .

Problem. Given (an)∞n=−∞, (bn)∞n=−∞ in `2C, assume that the Fourier series
•
∑∞

n=−∞ ane
2πinθ,

•
∑∞

n=−∞ bne
2πinθ,

•
∑∞

n=−∞ anbne
2πinθ

converge absolutely (for any θ), and thus uniformly to functions f , g and h in

C0
per(R,C). Prove that for x ∈ R, we have h(x) =

∫ 1

0
f(y)g(x − y)dy. You may

assume without proof that a uniformly convergent double sum
∑

n

∑
m can be in-

terchanged with a Riemann integral
∫ 1

0
. . . dx (even if both indices n,m are doubly

infinite); this follows e.g. from generalizing HW 2 (problem 2abd) to interchange
limits of nets with limits of nets given appropriate uniform convergence.

Hint: Write out
∫ 1

0
f(y)g(x−y)dy as the integral of a uniformly convergent double

sum and interchange the sum with the integral. Eventually you can bring the integral
inside until you just have the integral of an exponential and you can use the L2

orthogonality of the functions (en)n∈Z proved in HW 6/7.

(4) In the previous problem, we showed that multiplication of Fourier coefficients cor-
responds to convolution of functions. Now we consider the “opposite direction:”
multiplication of functions corresponds to convolution of Fourier coefficients. The
argument should be parallel, but the parallel proof requires higher technology (Dirac
delta functions rather than Kronecker delta functions, which are best formalized in
terms of distribution theory). Thus, in this problem, you should ignore rigor and just
calculate heuristically (it’s good not to forget how to do this).

Problem. For f, g ∈ C0
per(R,C) and n ∈ Z, show using heuristic calculations that

f̂ g(n) =
∑∞

k=−∞ f̂(k)ĝ(n − k). You may freely interchange integrals and series.

You may also assume the formula
∑∞

n=−∞ e
2πin(y−x) = δx(y), where δx denotes the

Dirac delta function at x (zero away from x and “infinitely spiked” at x). The
“function” δx is characterized by how it integrates against functions F (y): we have∫ 1

0
F (y)δx(y)dy = F (x) basically by definition (once the technology is set up).

Hint: Expand out the sum
∑∞

k=−∞ f̂(k)ĝ(n−k) using the integral definition of the
Fourier coefficients, then bring the sum inside the integrals as far as possible until
it can be replaced by a Dirac delta function. Use the delta function to change the
double integral into a single integral.

Remark. Heuristically, the Fourier coefficients of δ0 should each be 1, since∫ 1

0

δ0(x)e−frm−eπinxdx = e−2πin0 = 1.

Thus, “reconstructing δ0 in terms of its Fourier series,” we should have δ0(y) =∑∞
n=−∞ e

2πiny; shifting variables, we should have δx(y) =
∑∞

n=−∞ e
2πin(y−x).
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Remark. Given the first problem, we can now see rigorously (without using theorems from
complex analysis) that our two definitions of exp(x) (inverse of log(x) =

∫ x
1

1/tdt and power
series) agree on all of R, since they both solve the initial value problem y′ = y, y(0) = 1 on
all of R. Yet another way to prove this fact is using results about Taylor series from Section
4.6.

Suppose one defines arcsin(x) =
∫ x
0

1√
1−t2dt as discussed previously. By the fundamental

theorem of calculus, this arcsine function is differentiable on (−1, 1), and one can show it
maps [−1, 1] bijectively to [−π/2, π/2] (where π is defined to be half the circumference of
the unit circle). By the 1d inverse function theorem (we will prove the n-dimensional version
later), the inverse function sin : [−π/2, π/2] → [−1, 1] is differentiable on (−π/2, π/2) with

derivative sin′ =
√

1− sin2, and one can show that sin is right/left differentiable at the
endpoints {−π/2, π/2} with derivative zero. Differentiating again, one gets sin′′ = − sin.

Since arcsin(0) = 0, we have sin(0) = 0 and thus sin′(0) =
√

1− sin2(0) = 1.

One can check that the same second-order initial value problem is solved by the power
series

∑∞
n=0(−1)n x2n+1

(2n+1)!
(the Taylor series of sin at zero, computable from sin′′ = − sin and

the initial-value data), which has radius of convergence ∞. By the global uniqueness result
proved in the first problem, sin(x) agrees with the power series on (−π/2, π/2), so we can
use the power series to define sin (and thus sin′) on all of R. An analogous argument shows

that sin′ agrees with the series
∑∞

n=0(−1)n x2n

(2n)!
.

Remark. As previously discussed, using the series definitions, one can deduce Euler’s rela-
tion eix = sin′(x) + i sin(x); then one can use the addition formula ex+y = exey to deduce the
addition formula sin(x+ y) = sin(x) sin′(y) + sin′(x) sin(y) for the sine function.

The definition of arcsine in the previous remark is based on an arc-length integral for a
circle; it is natural to ask what happens if the circle is replaced by a different curve such as
an ellipse. The resulting elliptic integrals typically can’t be evaluated in terms of elementary
functions (the same would be true for the integrals

∫ x
1

1/tdt,
∫ x
0

1/
√

1− t2dt above except
that exp, sin, etc. and their inverses are considered “elementary” for historical reasons).
Instead, one uses them to define “generalized inverse trigonometric functions” and their
inverses, “generalized trigonometric functions” or “elliptic functions.” These have addition

formulas too (looking like ℘(x + y) = 1
4

(
℘′(x)−℘′(y)
℘(x)−℘(y)

)2
− ℘(x) − ℘(y) in modern notation),

related to group laws on elliptic curves and thereby to many deep questions in number theory.
A major discovery was made by Abel in 1827-8: when extended to the complex plane, these
elliptic functions ℘(z) have two independent directions of periodicity, so their natural domain
is a complex torus. The addition formula for elliptic functions encodes the fact that these
functions send the usual group operation on the complex torus (addition modulo the period
lattice) to a geometrically-defined group operation on an algebraic curve (an elliptic curve)
serving as the natural domain for the elliptic integral in question. In number theory, much
work is devoted to understanding the subgroup consisting of rational points on the elliptic
curve.


