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Problem 1

Let U be an open subset of Rm and let F ∶ U → Rm be Lipschitz. Let (a, b) and (a′, b′) be open intervals
of R, each containing t0. Let γ ∶ (a, b) → U and ζ ∶ (a′, b′) → U be differentiable functions with γ′ = F (γ),
ζ ′ = F (ζ), and γ(t0) = ζ(t0). Show that γ(t) = ζ(t) for all t ∈ (a, b) ∩ (a′, b′).

Proof. We first show that γ(t) = ζ(t) for all t ∈ [t0, b) ∩ [t0, b′). Per the hint, define

s ∶= supS ∶= sup{t ∈ (a, b) ∩ (a′, b′) ∣ γ(t′) = ζ(t′) for t0 ⩽ t′ ⩽ t}.

S is clearly nonempty as t0 ∈ S and it is also bounded from above by min(b, b′). Therefore s = supS is well-
defined. We want to show that s =min(b, b′), so suppose for contradiction that s <min(b, b′). By the definition
of supremum there exists a strictly increasing sequence {tn} that converges to s. Since γ and ζ are continuous,
γ(tn) → γ(s) and ζ(tn) → ζ(s). Notice that {γ(tn)} and {ζ(tn)} are identical, so by the uniqueness of limits
γ(s) = ζ(s). By our assumption s ∈ (a, b) ∩ (a′, b′), and the Picard-Lindelöf theorem says that γ and ζ agree
on some open neighborhood of s. This means γ and ζ agree on [s, s + ϵ for some ϵ > 0, contradicting the
assumption that s = supS. Therefore s = min(b, b′). An analogous argument can show that γ(t) = ζ(t) for all
t ∈ (a, t0] ∩ (a′, t0] by defining

r ∶= infR ∶= inf{t ∈ (a, b) ∩ (a′, b′) ∣ γ(t′) = ζ(t′) for all t ⩽ t′ ⩽ t0}.

Thus γ and ζ agree on all of (a, b) ∩ (a′, b′).

Problem 2

(Pugh, Ex.4.35.) Consider the ODE x′ = x2 on R. Find the solution of the ODE with initial condition x0.
Are the solutions to this ODE defined for all time or do they escape to infinity in finite time?

Solution

We first compute the general solution by separation of variables:

dx

dt
= x2 Ô⇒ dx

x2
= dt Ô⇒ ∫

t

0

dx
x2
= ∫

t

0
dt Ô⇒ − 1

x
= t +C.
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From the initial condition that x(t0) = x0 we get −1/x0 = t0 +C Ô⇒ C = −t0 − 1/x0. Therefore,

− 1
x
= t − t0 −

1

x0
Ô⇒ x(t) = − x0

tx0 − t0x0 − 1
.

If the initial condition is given at t0 = 0 this simply reduces to

x(t) = x0

1 − tx0
.

Note that x(t) is indeed well-defined at x(0). In fact, we can define its domain to be (−1/x0,1/x0), on which

x′ = −x0(1 − tx0)2(−x0) = x2.

This solution blows up in finite time; in particular as t ↑ 1/x0 or t ↓ −1/x0 the denominator (1 − tx0) → 0

and so x(t)→∞.

Problem 3

Given doubly infinite sequences {an},{bn} ∈ ℓ2C, assume that the Fourier series

∞
∑

n=−∞
ane

2πinθ,
∞
∑

n=−∞
bne

2πinθ, and
∞
∑

n=−∞
anbne

2πinθ

converge absolutely (for any θ) and thus uniformly to functions f, g, and h in C0
per(R,C). Prove that for

x ∈ R we have
h(x) = ∫

1

0
f(y)g(x − y) dy.

Proof. Notice that
f(y) =

∞
∑

n=−∞
ane

2πiny and g(θ − y) =
∞
∑

m=−∞
bne

2πin(θ−y).

What we want to show is that the convolution is the function to which
∞
∑

n=−∞
anbne

2πinθ converges uniformly to

for any θ. Indeed,

h(θ) = ∫
1

0
f(y)g(θ − y) dy

= ∫
1

0

∞
∑

n=−∞
ane

2πiny
∞
∑

m=−∞
bme2πim(θ−y) dy

= ∫
1

0

∞
∑

m,n=−∞
anbn exp[2πi(ny +m(θ − y))] dy

=
∞
∑

m,n=−∞
anbm ∫

1

0
exp[2πi(ny +m(θ − y))] dy.

For cases where m = n, we have
exp(2πi(ny +mθ −my)) = exp(2πimθ)

so
anbm = anbn ∫

1

0
e2πinθ dy = anbne2πinθ.
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Otherwise (if m ≠ n) we have ny +m(θ − y) =mθ − (m − n)y, and so

exp(2πi(mθ − (m − n)y)) = exp(2πimθ) exp(2πi(m − n)y)

= exp(2πi(m − n)y).

Integrating this gives

anbm ∫
1

0
e2πi(m−n)y dy = anbm

2πi(m − n)
[e2πi(m−n)y]

1

y=0 = 0.

Therefore, the double sum
∞
∑

m,n=−∞
can be reduced to

∞
∑

n=−∞
only, and

h(θ) =
∞
∑

n=−∞
anbne

2πinθ,

as desired. This shows that indeed the doubly-infinite series converge to f ∗ g, i.e., multiplication of Fourier
coefficients corresponds to the convolution of functions.

Problem 4

For f, g ∈ C0
per(R,C) and n ∈ Z, show using heuristic calculations that f̂g(n) =

∞
∑

k=−∞
f̂(k)ĝ(n − k). You may

freely interchange integrals and series; you may assume the formula
∞
∑

k=−∞
e2πik(y−x) = δx(y) where δx denotes

the Dirac delta function at x. We have ∫
1

0
F (y)δx(y) dy = F (x).

Proof. Let the brute force computation begin!!
∞
∑

k=−∞
f̂(k)ĝ(n − k) =

∞
∑

k=−∞
∫

1

0
f(x)e−2πikx dx∫

1

0
g(y)e−2πi(n−k)y dy

=
∞
∑

k=−∞
∫

1

0
f(x)∫

1

0
g(y) exp [−2πi(kx + (n − k)y)] dydx

=
∞
∑

k=−∞
∫

1

0
f(x)∫

1

0
g(y) exp [−2πiny] exp [2πik(y − x)] dy dx

= ∫
1

0
f(x)∫

1

0
g(y)e−2πiny

∞
∑

k=−∞
exp [2πik(y − x)] dy dx

= ∫
1

0
f(x)∫

1

0
g(y)e−2πinyδx(y) dy dx

= ∫
1

0
f(x)g(x)e−2πinx dx

= f̂g(n).
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