
Math 425b, Spring 2021 Name:
Final Exam
5/4–5/7

This exam contains 31 pages (including this cover page) and 7 problems. Don’t be concerned by
the number of pages, but do take a look at Problem 7 which occupies 13 of the pages. Problem
7 has two options and the first option, which is to prove one of the big theorems that
you didn’t prove on Midterm 2 (rather than doing the problem outlined on these 13
pages), is probably a good deal shorter and easier. I included Option 2 in Problem 7 because
it’s interesting and ties together many of the ideas from the first part of the course, but it may be
better to return to it after you’ve finished the exam.

There are 136 points on this exam in total; as with the midterms, the relevant number for grade
calculations is your percentage score ((your score times 100)/136).

One way to take the exam is to print it out, take it by hand as usual, and then scan and upload
the result into Gradescope. Other methods are allowed, e.g. you can write on a separate sheet /
sheets of paper or a tablet, or use LaTeX as long as you adhere to the time limits. In any case,
make sure your submission includes your name to avoid any Gradescope issues.

The time limit for the exam is: 2 time blocks (first block 4 hours, second block 5 hours), with a
break of any length in between (e.g. if you have questions about any of the problems, you can email
me and wait to take your second time window until I reply, but please make sure you’re completely
done with the exam by Friday night). You are not allowed to consult any course- or exam-related
resources during the break (books, notes, etc.).

You are required to write in complete sentences on this exam, with the usual exceptions for abbre-
viations, symbols, etc. permitted as on the homework.

You may not use books, notes, calculator, the Internet, or other outside resources on this exam.
You are expected to conduct yourself with academic integrity in all aspects of this exam; please let
me know if any concerns arise.
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1. (18 points) (a) (6 points) Let X be a set and let (Y, d) be a metric space. Let (fn)∞n=1 be a
sequence of functions from X to Y . Define what it means for (fn)∞n=1 to converge uniformly
to some function f : X → Y . Also, given a sequence of functions (gn)∞n=1 from X to a
normed vector space (V, ‖ · ‖), define what it means for the series

∞∑
n=1

gn

to converge uniformly.

(b) (6 points) Recall that one way to characterize convergence of doubly-infinite series
∞∑

n=−∞
gn

is by requiring that
∞∑
n=0

gn converges and that
∞∑
n=1

g−n converges (pointwise, uniformly,

etc.). Show that the doubly infinite series

∞∑
n=−∞

e−πtn
2

converges uniformly for t ∈ [a, b], assuming that 0 < a < b.

Hint: One approach is to use the Weierstrass M -test; can you bound the terms of the
series above by constants that don’t depend on t, such that these constants have finite
sum? If you have a sum with an n2 and you’d know it converged if it was n instead of
n2, the comparison test might be useful (choose the “smaller” series to be zero in term n
when n is not a perfect square).
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(More space for previous problem)

(c) (6 points) For a fixed t > 0, consider the function gt(x) = e−πtx
2

(a Gaussian with some
normalization). You may assume without proof that the Fourier transform ĝt(ξ)
exists and is equal to 1√

t
eπξ

2/t; this is a standard result. Show that

∞∑
n=−∞

e−πtn
2

=
1√
t

∞∑
n=−∞

e−πn
2/t

(note that convergence of both sums follows from the previous problem, since uniform
convergence implies pointwise convergence).

Hint: Apply the Poisson summation formula! If you forget this formula, you might be
able to guess it from the above equality.
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(More space for previous problem, although if you find yourself doing long computations then
you may be using the wrong formula).
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2. (18 points) (a) (8 points) Let V and W be normed vector spaces and let T : V → W be a
linear transformation. Define the operator norm ‖T‖op of T (it might be finite or infinite;
there are multiple equivalent answers you could give for this definition and they’re all
okay).

(b) (10 points) Let V,W,Z be normed vector spaces and let S : V → W , T : W → Z be
linear transformations; assume that ‖T‖op and ‖S‖op are finite. Show that

‖T ◦ S‖op ≤ ‖T‖op‖S‖op.

Hint: Start with the definition of ‖T ◦ S‖op as the supremum over certain vectors v of a
ratio of certain norms (this may also serve as a hint for the first part of this problem).
Multiply the numerator and denominator of this ratio by ‖S(v)‖ where v is the vector
you’re taking the supremum over; you should argue separately that you don’t need to
worry about vectors with S(v) = 0. Then apply properties of suprema to derive the
inequality you want.
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(More space for previous problem)
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3. (18 points) (a) (9 points) Let U be an open subset of Rn and let F be a function from U to
Rm. Define what it means for F to be differentiable at a point p ∈ U with total derivative
given by a linear transformation T : Rn → Rm.

(b) (9 points) Choose one of the following two problems:

� Show that if U is an open subset of Rn and F : U → Rm is differentiable at p, then F
is continuous at p.

Hint: You want to show that limv→0 F (p + v) = F (p); to do this, you can use the
“approximation formula” for F (p + v) in terms of its total derivative. Try to show
that this formula approaches F (p) as v → 0; to analyze the remainder term R(v) in
the formula, the definition of differentiability is useful.

� Show, directly from the definition of differentiability, that if the total derivative of F
at p exists then it is unique (i.e. if F is differentiable at p with total derivative T , and
the same is true with T replaced by T ′, then T = T ′.

Hint: Show that if both T and T ′ work in the definition of differentiability of F at p,

then limv→0
T (v)−T ′(v)
‖v‖ = 0. Assuming we have T (v0) 6= T ′(v0) for some vector v0, try

to derive a contradiction by scaling v0.
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(More space for previous problem)
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4. (25 points) Prove one of the following theorems (your choice). If you prove more than one,
only the first will be graded. You may assume any lemmas that you need; only the main proof
of the theorem is required. Extended hints for each can be found below.

� Multivariable chain rule: if

– U ⊂ Rn and V ⊂ Rm are open,

– p ∈ U ,

– F : U → V and G : V → Rk are functions,

– F is differentiable at p with total derivative A, and

– G is differentiable at F (p) with total derivative B,

then G ◦ F is differentiable at p with total derivative BA (it’s useful to view A and B
as matrices here, corresponding to linear transformations by using the standard bases for
Rn, Rm, and Rk).

� C1 functions are differentiable: if U is an open subset of Rn and F : U → Rm is a C1

function on U , then F is differentiable at each point p ∈ U with total derivative at p
having standard-basis matrix

(Jf)p =


∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...
∂Fm
∂x1

· · · ∂Fm
∂xn

 .
� Inverse function theorem: if

– U0 ⊂ Rn is open with p ∈ U0,

– f : U0 → Rm is a Cr function for some 1 ≤ r ≤ ∞, and

– (Df)p is invertible,

then m = n and there exist open subsets U ⊂ U0, V ⊂ Rn, containing p, f(p) respectively,
such that f is a Cr diffeomorphism from U to V .

Hint for chain rule: Let q = F (p). Let RF (v) = F (p + v) − F (p) − Av and RG(w) =
G(q + w)−G(q)−Bw. Similarly, let RG◦F (v) = G(F (p+ v))−G(F (p))−BAv; you want to

show that RG◦F (v)
‖v‖ → 0 as v → 0.

In the formula for RG◦F (v), start by writing out F (p+ v) in terms of its linear approximation
and remainder term RF (v). The result should be q = F (p) plus something else; call this other
term w and write out G(q+w) in terms of its linear approximation and remainder term RG(w).
You should get some cancellation in your overall expression for RG◦F (v); show that

RG◦F (v) = BRF (v) +RG(Av +RF (v)).

It suffices to show each of these terms, divided by ‖v‖, goes to zero as v → 0. Deal with
the first term first, then consider the more complicated second term. Show that for v with
Av + RF (v) = 0, the second term always vanishes, so we can restrict attention to v with
Av +RF (v) 6= 0.

In this case, multiply the numerator and denominator of RG(Av+RF (v))
‖v‖ by the same quantity

(chosen so that you can apply differentiability of G at q). You will get a product of two
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fractions, one of which you can show approaches zero as v → 0, and the other of which you can
show is bounded as v → 0.

Hint for C1 implies differentiability: Let J = (JF )p and let R(v) = F (p + v) − F (p) − Jv;

you want to show R(v)
‖v‖ → 0 as v → 0. For 1 ≤ i ≤ m, let Ri(v) be the ith coordinate of R(v);

write out Ri(v) using explicit partial derivatives for the term coming from the ith row of Jv.

It suffices to show that for each fixed i, we have Ri(v)
‖v‖ → 0 as v → 0.

To do this, given ε > 0, choose δ > 0 such that if ‖v‖ < δ then p+ v ∈ U and∣∣∣∣∂Fi∂xj
(p+ v)− ∂Fi

∂xj
(p)

∣∣∣∣ < ε/n

for 1 ≤ j ≤ n (why is it possible to choose δ like this?). Your goal will be to show that if

‖v‖ < δ then |Ri(v)|
‖v‖ < ε, proving the theorem.

To prove this inequality, write out Ri(v) even more explicitly, expanding out any matrix mul-
tiplications that appeared in your above formula. You should have Fi(p + v) − Fi(p) minus a
sum of n terms; the strategy will be to write Fi(p+ v)−Fi(p) similarly as a (telescoping) sum
of n terms. You will then have n pairs of terms, and you will want to show that each pair has
absolute difference at most ε/n.

For the telescoping sum, let ej be the jth standard basis vector of Rn for 1 ≤ j ≤ n. It helps
to write

p+ v = p+ v1e1 + · · ·+ vnen;

from here, look for a natural way to write Fi(p+ v)− Fi(p) as a telescoping sum

Fi(pn)− Fi(pn−1) + Fi(pn−1)− · · · − Fi(p1) + Fi(p1)− Fi(p0)

for some points p0, . . . , pn with p0 = p and pn = p+ v.

You want to set things up above so that Fi(pj) − Fi(pj−1) can be handled using the single-
variable mean value theorem, so pj and pj−1 should differ only in their jth coordinates. Once
you’ve chosen the right points pj , define a straight-line path σj from pj−1 to pj , in such a way
that the existence of the partial derivative ∂Fi

∂xj
implies the differentiability of Fi ◦ σj (and such

that the derivative of Fi ◦ σj at t is ∂Fi
∂xj

evaluated at σj(t)).

From here, the single-variable mean value theorem should allow you to rewrite Fi(pj)−Fi(pj−1)
in a more useful way. Returning to the goal, use this rewriting together with the assumption
‖v‖ < δ to show that Ri(v)

‖v‖ < ε as desired.

Hint for inverse function theorem: To apply the implicit function theorem, define F : U0×Rn →
Rn by F (x, y) = f(x) − y (note that U0 × Rn is an open subset of R2n). Let q = f(p) and
compute the Jacobian matrix of F at (p, q) as a block matrix (there should be a left block and
a right block, both of size n× n, and both invertible).

Use invertibility of the left block (the less trivial one) and apply the implicit function theorem:
you should get open neighborhoods Up ⊂ U0 and Vq ⊂ Rn of p and q respectively, and a unique
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function h : Vq → Up such that

F−1(0) ∩ (Up × Vq) = graph(h)

(you also know that h is a Cr function). Use this property to deduce that

f ◦ h = idVq .

Now run the same argument in reverse. Define G : Uq × Vp → Rn by G(x, y) = x − h(y).
Compute the Jacobian matrix of G at (p, q) as a block matrix; show the right block is invertible
and use the implicit function theorem to get an open neighborhood U ′p× V ′q ⊂ Up× Vq of (p, q)
and a unique function g : U ′p → V ′q such that

G−1(0) ∩ (U ′p × V ′q ) = graph(g).

Use this property to deduce that
h ◦ g = idU ′p .

Now clean things up to get an actual local inverse map for f : first show that for points x in
U ′p, we have g(x) = f(x) (i.e. that g is the restriction of f to U ′p). This should be short; start
by writing g(x) = f(h(g(x)) (why can you do this?).

In a final “cleaning” step, let U := U ′p and V := h−1(U). Show that the conclusions of the
inverse function theorem are satisfied: f maps U into V , h maps V into U , and the compositions
h ◦ f and f ◦ h are idU and idV respectively.
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(more space for previous problem)
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(more space for previous problem)
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5. (16 points) Define F : R3 → R2 by

F (x, y, z) = (4x2 + 4y2 − 4z2, x2 + y2 + z2).

(a) (8 points) Compute the Jacobian matrix of F , a 2×3 matrix whose entries should depend
on (x, y, z).

(b) (8 points) Consider the level set F−1(1, 1) ⊂ R3 (this level set is the intersection of a
hyperboloid and a sphere in R3). Show that for all points (x, y, z) in the level set F−1(1, 1),
the Jacobian matrix of F has maximal rank (so that the hypotheses of the implicit function
theorem hold).

Hint: At a point (x, y, z), if you can select two of the three columns of (Jf)(x,y,z) to get
a matrix with nonzero determinant, then (Jf)(x,y,z) has maximal rank. Show that if the
determinant is zero when you take columns 1 and 3, and the determinant is also zero
when you take columns 2 and 3, then it’s not possible to have 4x2 + 4y2 − 4z2 = 1 and
x2 + y2 + z2 = 1.
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(More space for previous question)
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6. (16 points) (a) (8 points) Let β = (x2y + z)dx+ (xyz)dy + (x+ yz2)dz, a differential 1-form
on R3. Compute dβ.

(b) (8 points) Let P (x) and Q(x) be smooth functions from R to R, and consider the differ-
ential 1-form

α = (P (x)y −Q(x))dx+ dy

on R2. Let
µ(x) = e

∫ x
0 P (t)dt.

Prove that the differential 1-form

µα = µ(x)(P (x)y −Q(x))dx+ µ(x)dy

satisfies d(µα) = 0.
Remark. A function µ as above is often called an integrating factor for α.
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(More space for previous problem)
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7. (25 points) For this question, you have a choice:

� Option 1: look back at midterm 2. Out of { Arzelá–Ascoli theorem, Weierstrass approx-
imation theorem, Stone–Weierstrass theorem, Picard–Lindelöf theorem }, pick one that
you didn’t prove on midterm 2 and prove it (you can use the hints from midterm 2), or:

� Option 2: do the following problem, exploring the functional equation for the Riemann
ζ function (this is sort of like a homework problem with some new material along with
hints).

Note: if you do attempt the following problem, which I think is harder and more
time-consuming than the proofs from midterm 2, I recommend doing the other
problems on the exam first so you don’t run into time issues. It might be a safer
bet to do Option 1 and then return to this problem once you’re done with the
exam if you’re interested.

(a) (5 points) Let c > 0. For any complex number s, prove that the improper Riemann
integral ∫ ∞

1
ts−1e−ctdt

converges (see the hint for a result you can assume without proof). If the real part of s
is greater than 0, prove that the improper Riemann integral∫ ∞

0
ts−1e−ctdt

converges (when c = 1 this integral defines the Γ function Γ(s)).

Hint: For the first part, it suffices to show that
∫ b

1 t
s−1e−ctdt is Cauchy in b, i.e. that∣∣∣∫ b2b1 ts−1e−ctdt

∣∣∣ is small for large b1, b2. To show this, pick b1, b2 large enough so that for

the t-interval under consideration, |ts−1| ≤ ect/2 (note that |ts| = tRe(s) for positive t).

You know it’s possible to choose these b1, b2 since limt→∞
tK

ect/2
= 0 for any K; you may

assume this result without proof although it follows from L’Hopital’s rule once you
assume (WLOG) that K is an integer. Now use convergence of the improper Riemann
integral ∫ ∞

1
e−ct/2dt

which you can show by a direct computation.

For the second part, the first part shows you only need to consider
∫ 1

0 t
s−1e−ctdt; you can

argue that
∫ 1
a t

s−1e−ctdt is Cauchy in a by estimating away the e−ct factor (it’s ≤ 1) and
using that the real part of s is greater than 0.
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(More space for previous problem)
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(b) (5 points) For any complex number s with real part > 1, we want to define (a variant of)
the Riemann ξ function using the improper Riemann integral formula

ξ(s) :=

∫ ∞
0

t
s
2
−1

( ∞∑
n=−∞

e−πtn
2 − 1

)
dt.

Show that this improper Riemann integral exists and is given by the formula

ξ(s) = 2π−
s
2 Γ
(s

2

)
ζ(s)

where

Γ(s) :=

∫ ∞
0

ts−1e−tdt

is the Γ function considered above and

ζ(s) :=

∞∑
n=1

1

ns

is the Riemann ζ function (this series converges when Re(s) > 1 by the results we covered
on p-series). You may assume the following result without proof, which follows
from HW 4:

Proposition. Let (A,�) be a directed set and consider a sequence fn(a) of real-valued
nets fn : A→ R. Assume that:

� For each fixed n, the net fn(a) converges (in a) to a limit Ln ∈ R.

� The nets fn converge uniformly (as a sequence of functions A → R) to some net
f : A→ R.

Then the limits Ln converge to some L ∈ R, and lima f(a) exists and equals L; in other
words

lim
a

lim
n→∞

fn(a) = lim
n→∞

lim
a
fn(a).

Hint: The strategy for the hint will be to first look at the integral∫ b

a
t
s
2
−1

( ∞∑
n=−∞

e−πtn
2 − 1

)
dt

for finite 0 < a < b, then try to consider the limit as a → 0, b → ∞. For the integral
with finite limits (a, b), you’re integrating with respect to dt and you know from the first
problem on the exam that

∑∞
n=−∞ e

−πtn2
converges uniformly for t ∈ [a, b]. Conclude that∑∞

n=−∞ e
−πtn2

is a continuous (and thus Riemann integrable) function of t ∈ [a, b]; the
same is true for the entire integrand above, so that the finite integral from a to b makes
sense.

Next, use what you know about how Riemann integrals interact with uniformly convergent
series of functions to bring the infinite sum outside the integral sign. It might be convenient
at this point to note that the “minus one” in the parenthesized part of the integrand just
cancels the n = 0 term of the doubly infinite sum, which is then symmetric, so that the
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parenthesized part is the same as

2
∞∑
n=1

e−πtn
2
.

You should get a formula for the finite integral from a to b that looks like

2

∞∑
n=1

∫ b

a
. . . dt

(the integrand inside the sum should appear related to the integrand of the Γ function,
although not quite identical).

Now try to take the limit as a→ 0 and b→∞, which you want to show can be interchanged
with

∑∞
n=1. The overall plan is to use the above proposition on uniform convergence

and limits of nets, with A the set of pairs (a, b) of real numbers with 0 < a < b and
(a, b) � (a′, b′) if a′ < a and b′ > b. Adapting the notation of the above proposition,

the net fn(a, b) should be a finite integral
∫ b
a of the nth partial sum

∑n
m=1 of the series

(equivalently, you could take the integral inside the partial sum).

� To show lima→0,b→∞ fn(a, b) exists for each fixed n, you can use part (a) of this
problem.

� To show the series
∑∞

n=1

∫ b
a . . . dt converges uniformly in the variables a, b (ranging

over all pairs (a, b) with 0 < a < b), you can show it’s uniformly Cauchy: for large

enough N,M , you want to show that the sum from N to M of
∫ b
a . . . dt is uniformly

small independently of a and b (even for very small a and very large b). For each
n, you can use the u-substitution u = πn2t (limits of integration will be from πn2a
to πn2b), then show the absolute value of the result is less than or equal to some
coefficient (constant in n, involving Γ(s/2) and another factor) times 1

ns . Finally, use

convergence of the ζ function for s with real part > 1 to show that
∑M

n=N
1
ns is small

for large N,M .

It should follow that

lim
a→0,b→∞

lim
n→∞

fn(a, b) = lim
n→∞

lim
a→0,b→∞

fn(a, b)

(in particular, the limit on the left-hand side exists). You can evaluate the right-hand side
using the same u-substitution as above, and you should get the formula you’re trying to
prove (relating ξ(s) to Γ( s2) and ζ(s)).
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(More space for previous problem)
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(More space for previous problem)
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(c) (5 points) Show that the improper Riemann integral integral∫ ∞
1

t−1
(
ts/2 + t(1−s)/2

)( ∞∑
n=−∞

e−πtn
2 − 1

)
dt

makes sense for all complex s.

Hint: Note that the lower limit is t = 1 rather than t = 0 (this makes things simpler).

As in the previous part, you can start by looking at the integrals
∫ b

1 for finite b; you want
to show their limit exists as b → ∞. You can apply the above proposition on uniform
convergence and limits of nets again:

� For each fixed n, you can use part (a) of the problem to show that limb→∞ fn(b) exists,
with fn(b) defined as

fn(b) = 2

∫ b

1
t−1
(
ts/2 + t(1−s)/2

)( n∑
m=1

e−πtm
2

)
dt

(it may help to note that for large enough constantsA,K, one has t−1
(
ts/2 + t(1−s)/2

)
≤

AtK for all t ≥ 1).

� To show fn(b) converges as n → ∞, uniformly in b ∈ [1,∞), it suffices to show that
for large enough N,M , the quantity

2

M∑
m=N

∫ b

1
t−1
(
ts/2 + t(1−s)/2

)
e−πtm

2
dt

is small independently of b. Write

e−πtm
2

= e−πtm
2/2e−πtm

2/2 ≤ e−πm2/2e−πt/2,

pull the factor e−πm
2/2 outside the integral, and show that the remaining integral is

≤ C for some constant C independent of both b and m. You’ll be reduced to showing
that

M∑
m=N

e−πm
2/2

is small for large N,M .

It should follow that the improper Riemann integral in the problem statement exists for
all complex s (it equals

2
∞∑
n=1

∫ ∞
1

t−1
(
ts/2 + t(1−s)/2

)
e−πtn

2
dt,

which also exists).
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(More space for previous problem)
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(d) (5 points) Show that for complex s with Re(s) > 1, we have

ξ(s) = − 2

s(1− s)
+

∫ ∞
1

t−1
(
ts/2 + t(1−s)/2

)( ∞∑
n=−∞

e−πtn
2 − 1

)
dt.

Hint: Split the original integral definition of ξ(s) into integrals from 0 to 1 and 1 to ∞:

ξ(s) =

∫ 1

0
t
s
2
−1

( ∞∑
n=−∞

e−πtn
2 − 1

)
dt+

∫ ∞
1

t
s
2
−1

( ∞∑
n=−∞

e−πtn
2 − 1

)
dt.

For the integral from 0 to 1, do the u-substitution u = 1/t so you get an integral from
u = 1 to u =∞. Using the first problem on this exam, show that

ξ(s) =

∫ ∞
1

t
−s−1

2

( ∞∑
n=−∞

eπtn
2 − 1√

t

)
du+

∫ ∞
1

t
s
2
−1

( ∞∑
n=−∞

e−πtn
2 − 1

)
dt

(this is the key step). The difference between this expression and the integral in the
statement of the problem is ∫ ∞

1
t
−s−1

2

(
1− 1√

t

)
dt;

show this integral evaluates to −2
s(1−s) .
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(e) (5 points) Note that the previous part of the problem defines ξ(s) for all complex s 6= 0, 1.
Since we have

ζ(s) =
πs/2ξ(s)

2Γ(s/2)

for Re(s) > 1 and Γ(s) is defined for Re(s) > 0, the above formula extends the domain
of definition of ζ(s) to all s with Re(s) > 0. In fact, the Γ function satisfies the following
property which you may assume without proof :

Proposition. For 0 < Re(s) < 1, we have

Γ(s)Γ(1− s) =
π

sin(πs)
.

Thus, for Re(s) < 1 we can define Γ(s) := π
sin(πx)Γ(1−s) and this agrees with our original

definition on 0 < Re(s) < 1. It follows that the Γ function (and thus by above the ζ
function) extends to the whole complex plane (minus some “poles”), and that the above
equation relating the Γ and sine functions is valid on the complex plane.

You may also assume the following property without proof, due to Legendre:

Proposition. For s in the complex plane, we have

Γ
(s

2

)
Γ

(
s+ 1

2

)
=

√
π

2s−1
Γ(s).

Show that Riemann’s functional equation for the ζ function,

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

is satisfied.

Hint: Start by noting that since the definition of ξ(s) treats s and 1 − s symmetrically,
we have ξ(s) = ξ(1− s). Expand this equation out using

ξ(s) = 2π−
s
2 Γ
(s

2

)
ζ(s)

on both sides, and rearrange so the equation reads ζ(s) = . . . ζ(1− s). You want to show
that the expression “. . .” you get here agrees with 2sπs−1 sin

(
πs
2

)
Γ(1− s).

To do this, first use a proposition above to express sin
(
πs
2

)
in terms of gamma functions.

In the equation you’re trying to prove, there should be a Γ(s/2) factor that cancels on
each side, simplifying things. Once you’ve made this simplification, you can apply the
other proposition above.
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(f) (0 points) Given the above extension of the function ζ(s) to the complex plane, show that
ζ(s) 6= 0 unless s = −2,−4,−6, . . ., or Re(s) = 1/2. No points but you get everlasting
fame and a million dollars.


