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Problem 1

(a)

Let X be a set and (Y, d) a metric space. Let {f,}re; be a sequence of functions X — Y. Define what

it means for {f,}°; to converge uniformly to some function f: X — Y. Also, given a sequence of

functions {g, }72; from X to a formed vector space (V,||-|), define what it means for the series »_ g,
n=1
to converge uniformly.

[}

Recall that one way to characterize convergence of doubly-infinite series Z gn is by requiring that

n=—oo
oo oo

> gy converges and that »_ g_,, converges (pointwise, uniformly, etc.). Show that the doubly infinite

n=0 n=1

series
oo

Z e—ﬂ'tn2

n=—oo

converges uniformly for ¢ € [a,b] assuming 0 < a < b.

2 . . . .
mt2” a Gaussian with some normalization. You may

For a fixed ¢ > 0, consider the function g;(x) = e~
assume without proof that the Fourier transform §;(£) exists and is equal to em/t / V/t. Show that
i e—'n'tn2 _ i i 677rn2/t

VS

n=—oo

[Hint: Poisson summation formula.

Solution.

(a)  {fn}s2, converges uniformly to f if the following criterion is met:

For all € > 0, there exists N € N such that whenever n > N, d(f,(x), f(z)) <e for all z.

oo

Likewise, Z gn converges uniformly if the sequence of its partial sums converges uniformly, i.e., if

n=1

k
{hk}zil defined by h’k = Zgn
i=1

converges uniformly.
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(b)  Proof. Notice that if f(x) = e’ for x e [a,b] as defined in the problem, then |f] = f(a) (because this
exponential function is strictly decreasing).

T

Consider the series of constants Y e~ ", Since we only focus on t € [a,b], each term e™"" is bounded by

n=1

oo oo

2 _ 2 _ 2 . . o . .

e~ ™" Therefore Z e ™t g Z e ™" . Also, since exponentials are always positive, if we try to bound the
n=1 n=1

series, it does not hurt to add some extra terms:

o0 2 oo 2 oo
Z e—wtn < Z e man” Ze—ﬂak < Z 6—7rak.
n=0 k=0

n=0 k square
The last one is a geometric series with exponential growth rate 1/e < 1 so it converges to a finite number.

Therefore so is the first one, and clearly Z emHE)® Z e’ ¢ Z e Tk,
i=1 i=1 k=1

We just bounded both singly-infinite series of functions (with respect to |« |) by a convergent series of

constants and so we can invoke the Weierstral M-test and conclude that Z e and Z e i)’ converges
n=0 n=1

uniformly on [a,b]. Hence ) e ™" also converges uniformly. O

n=—oo

(c) Poisson summation formula states that Y f(n)= ), f(n), and this is precisely what the equation is:

n=—oo n=—oo

— —mtn? — eXp(—ﬂ'fz/t) 1 — —mn?/t
D Y- s L WAV Sl O
n:z—:oo 5:2—200 \/E \/E n:z—:oo

Problem 2

(a) Let V,W be normed vector spaces and let T : V' — W be a linear transformation. Define the operator

norm |T|p of T

(b) Let V,W,Z be normed vector spaces and let S:V - W and T : W — Z be linear transformations.
Assume that both |T|,p and |S|op are finite. Show that

170 Sop < [T op | Slop-

Solution.

(a) |T|op=inf{L>0:|T(v)| < L(v) for all v e V} = sup |T'(v)| = sup |T'(v)| =sup HT(U)H

lvll=1 loli<1 o0 o]
(b)  Proof. The claim is trivial when one of them has 0 operator norm. For the nontrivial case, we will need to

use the fact that supremum of product < product of supremum:

T T T
IT 0 Sop = sup I TS@)] _ sup I TS)] _ < |7S()| [S(v)]
lofz0 V] lzo vl lojzo  1S@)]| |v]
S(v)#0 S(v)#0

TS ()] IS (v)] IS ()]

< sup - su = sup ———~=|Sllop <ITop|Sop- O

=0 1S jepzo Tol s@y=0 1S@)] P prep

S(v)+0 S(v)=#0
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Problem 3

(a) Let U be an open subset of R™ and let F' be a function from U to R™. Define what it means for F' to

be differentiable at p € U with total derivative given by a linear transformation 7": R™ — R™.

(b)  (Second option) show that if such T exists then it is unique.

Solution.

(a) We say F is differentiable at p with total derivative T if

i @ +v) = F(p) ~T(v) _

0.
v=0 o]

(b)  Proof. If T and S are distinct total derivatives of F at p, then substituting S and 7" into the definition above

and subtracting yields

o S =T@) L (S=T)(v) _

0.
v=0 o v=>0 o

Now suppose for contradiction that S — 7T is not the zero linear transformation, i.e., there exists vy satisfying

(S=T)(vp) #0. We consider cvg where ¢ € R*. Letting ¢ — 0, we have cvg > 0, and so

(5-T)(cvo) - lim (5 =T) (o) 0

lim
=0 fevo =0 o
contradiction. Hence S —T must be the zero transformation, i.e., S =7T. Hence the uniqueness. O
Problem 4

(Second option) prove that C! functions are differentiable: if U ¢ R™ is open and F : U - R™ a C! function

on U, then F is differentiable at all p € U with total derivative at p having the standard-basis matrix

o o

8761 (p) % (p)
(j F )p =

oF,, oF,,

87331(17) oz, (p)

Proof. Let J := (JF), and let R(v) := F(p+v)-F(p)—Jv. We want to show that R(v)/||v| - 0 as v > 0. For
1<i<m, let R;i(v) be the i*" coordinate of R(v) and likewise for Fj(v). By definition

OF;
8.731

Ri(0) = Fp0) = F0) - [520) o)

It suffices to show that for each i, R;(v)/|v] = 0 as v — 0.
Now let € > 0 be given. We choose § > 0 satisfying the following:

(1) If ||v| < 6 then p+ v e U (possible because U is open) and

(2) 0 (p+v)- 0 (p)| < S for1g j <n (possible because oL is continuous).
O0x; Ox; n Zj
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We claim that this § satisfies the e — § condition, i.e., if |v| < § then |R(v)|/|v| <e.

To see this, we first rewrite v = " v;e; (where e;’s are the standard basis of R") and rewrite R;(v) in the form
j=1
of a telescoping sum:

Ri(v) = F@*’Z”]%) Fi(p) - Zvja

] n n-1 aFi
= Fi(p+ Y ve)) - Fip+ Y vye)) = va ot (p)
j=1 i=1 On
n—1 n-2

ZU7€7) F(p+217] 7) Unl (p)

Un-1

: OF;
++ Fy(p+uvier) - Fi(p) - 1)18—(])).
(%

Clearly there are n lines in total, and we will show that each line < e/n using the MVT. For the (n+1-k&)*® line

(k*™ counting from bottom), since
k-1

g:te Fi(p+ ) vjej +teg)
j=1

is differentiable on [0,vy] (because OF /0x; exists on U), it’s well-defined to compute its derivative

k-1

g'(t) = Z vjej +tey).

Therefore g(vi) — g(0) = g'(0)(vx, - 0) for some 6 € [0, vg], i.e

k-1 OF k-1
Fi(p+ Zv]e]) F(p+ZvJeJ) vka—(p+2vjej+06k)
Finally, since |(v1,...,v5-1,6,0,...)| < [(v1,...;0n)| = ||v], we have

H (n+1-k)™ lineH =

OF; k-l OF;
Ukaixk(p + ; vje; +0er) — v o, (P)H

kol OF; vk |e
=v L vje; + fe d <k
vk O z::l €5 k O (p) n
and since |v;| < |Jv] for all j,
Ri(v) Z |vjle i €
HUH Jj= 1”””” Jj= 1n
This proves the claim. O

Problem 5

Define F : R? - R? by
F(z,y,2) = (42 + 4y* — 42%, 2% + > + 27).

(a) Compute the Jacobian matrix of F'.

(b)  Consider the level set F~'(1,1). Show that for all points (z,y,2) in this level set the Jacobian matrix

F' has maximal rank.
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Solution.

(a) By definition,

8x 8y -8z
(jF)(Ly,z) = .
2¢ 2y 2z

(b)  Proof. We prove by contradiction. Suppose JF at some (z,y,2) € F~*(1,1) is not of maximal rank. Then

it’s of rank at most 1. In particular, the following two matrices would be singular:

8r 8y 8y -8z
20 2y 2y 2z '

The first one is, of course, always singular, but if the second one is singular then z = 0 (multiply second row
by 4 and obtain 8z = -8z). Then
4a% + 4% =1 22 +y? =1,

clearly a contradiction. This finishes the proof. O

Problem 6

(1) Let B:= (z%y + 2z)dz + (zy2)dy + (z + yz?)dz, a 1-form on R3. Compute dj.
(2) Let P(x),Q(x) be smooth functions from R to R. Consider the differential 1-form
o= (P(r)y - Q(a))da + dy

on R?. Let

w(zx) :=exp /(;w P(t) dt.

Prove that the 1-form
na = p(@)(P(x)y - Q(x))de + p(x)dy

satisfies d(ua) = 0.

Solution.

(a) dg = (2xydz +22dy + dz) Adz + (yzdz + zzdy + 2ydz) Ady + (dz + 22dy + 2yzdz) Adz

= (yz - 2®)dz Ady + (22 - zy)dy Adz.

(b)  We will compute d(ua) by brute force. Note that the a-partial of u(z)(P(x)y — Q(«)) does not matter

because eventually it vanishes with dx A dz. Meanwhile,

82 [1(z)(P(2)y - Q(2))] = p(x) P(x).
Y
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Therefore,
d(pa) = p(z)P(z)dy A dx + ' (2)dz A dy

[chain rule] = p(z) P(x)dy A dz + p(z) P(x)dz Ady = 0. O
Problem 7

Prove the Picard-Lindeléf Theorem: if U ¢ R™ is open and F' : U - R™ is locally Lipschitz, then, given
p € U, there exists a locally unique solution to the IVP ~/(t) = F(y(¢)) defined on (a,b) € R with x(ty) = yo.

Proof. For convenience let ty = 0 (the generic case can be obtained via the integral equation once the case tg =0
is proven). WLOG assume F is Lipschitz with constant L on all of U. Pick r > 0 such that N := B(yo,r) c U.
Since N is closed and bounded in R™, it is compact, on which the continuous image F(N) is also compact.
Hence there exists M € R such that |F(z)| < M for all z € N.

Now pick 7 > 0 sufficiently small such that 7 < min(r/M,1/L). We claim that

(1) there exists v: (-7,7) - N differentiable with +'(¢) = F'(y(t)), and
(2) such + is unique.
Notice that solving the IVP +/(¢) = F(v(t)),v(0) = yo is equivalent to solving
10 =70+ [ F((5)) ds.
Since the space (C°([-7,7],N),dsup) is Banach, if we can show that
@O =m0+ [ FO(s)) ds

is a contraction, then by the Banach contraction mapping theorem, there exists a fixed point which would solve

our IVP. Clearly ®(v) is continuous, and for ¢ € [-7, 7],

0Ol = | [P as | €die-0 < b7 =3 minto g1/ <

so indeed ®(7)(t) is always an element of C°([-7,7],N). Now we show that ® is actually a contraction with

constant 7L < 1. If 7,0 € C°([-7,7], N), then

@), 200 = sw |+ [ FOE) ds-o- [ Fo(s) ds

te[-7,7]

= sup
te[-7,7]

< sup |t]- sup]HF(V(S))—F(U(S))H

te[-7,7] se[T,T

[ PG - Fats) ds

<7-L osup [y(s) —o(s)] = 7L dsup(7,0).
se[-7,7]

Now we can invoke the Banach contraction mapping theorem and conclude that there exists a solution to the

IVP. Uniqueness follows from one of our HWSs, in which we’ve shown that if v : (a,b) — U and o : (a/,b") > U

are two solutions to the IVP then « and o must agree on (a,b) n (a’,d"). Local uniqueness still holds. O
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Alternate Problem 7

Problem: 7(a)

Let ¢ > 0. For any complex number s, show that the improper Riemann integral

f T pteet gy
1

converges. If the real part of s is greater than 0, prove the improper Riemann integral

/oo ts—le—ct dt
0

converges. When c =1 this integral defines the I' function.

b
Proof. For the first part, it suffices to show that the integrals f t7te™°" dt is Cauchy; equivalently, it suffices
1

b2
to show that when by,bs are sufficiently large, f t*1e™ dt can be made arbitrarily small. Indeed, since
by

tlim |t5]/ect/? = tlim t7() [eet/2 — () (as given by the hint), we are able to find by, by large enough such that

|t>~1| < /2. Then we can bound the integral by

bo ba ba
t5leet dt < f [ttt dt < f et qt.
by by by

The last term is much nicer, as

o 26—0/2
= — <X
1 C

)

foo e—ct/2 dt = _ge—ct/Q
1 C

ba
which implies f e At - 0 as min(by,be) - co. This proves the first claim.

by

1
For the second claim, we only need to verify that f t* 1™ dz is finite. Since ¢>0and ¢t >0, e <1, so
0

1 1 1 1
/ 5 lemet di < f 57l dt < f L5t dt = f el gy,
0 0 0 0

By assumption Re(s) > 0 so Re(s—1) > —1. Even Calc I students would realize that this integral is finite. O

Problem: 7(b)

For any complex number s with real part > 1, we want to define (a variant of) the Riemann ¢ function using

the improper Riemann integral formula

&(s) = fowts/Ql( i o T —1) dt.

n=—o0o

Show that this improper Riemann integral exists and is given by

£(s) = 2nT(s/2)¢(5)
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where

(s):= /:o t57te™t dt ¢(s) = 2%

[ Proposition |

For this problem, you may assume the following statement on nets. Let (A, <) be a directed set and consider

a sequence f,(a) of a real-valued nets f, : A » R. Assume that
(1) for each n, the net f,(a) converges (in a) to a limit L, € R and
(2) the nets f, converge uniformly (as a sequence of functions A - R) to some net f: A > R.

Then L,, converge to some L € R and lim, f(a) exists and equals L. In other words,
lim lim f,(a) = lim lim f,(a).
a mn—>oo n—»oo a

Proof. Following the hint, we will first consider

b o 5
/ ts/21( Z e Tin _1) dt

n=—oo
and then let @ — 0 and b — co. By the first problem, Z e ™" is the limit of a uniformly convergent series of
n=—oo

continuous functions and is therefore continuous. Thus the entire integrand is continuous and the integral from

a to b is well-defined.

In addition, since / and Z for a uniformly convergent series are interchangeable,

b 21 X rtn® | N —mtn? — b/2—1—t2
fts/ Mo Y e dt:ZZf /271t g,
a n=1 n=17a

n=-1

Now define A to be the set of pairs of real numbers (a,b) with 0 < a < b where < is defined as (a,b) < (a’,0") if
a' <a<b<d'. Define

k  rb ,
fr(a,b) =2 [ 31271t g,
n=17a

By part (a), since Re(s/2) >0, ( )hr? )fk(a, b) exists for any k. The net condition (1) is satisfied.
a,b)—(0,00
To show our construction of f;(a,b) also satisfy condition (2), we need to show {f;} is uniformly Cauchy. To

do this, we need a u-substitution u = 7n?t. For M > N and arbitrary (a,b), this gives

M b ,
fM(avb) _fN((Z,b) =2 Z / tS/Q*Ie*Trtn dt
n=N ~@

2 —
9 %I: /‘TI'TL b( u )5/2 1 —u du
= —_— e —_—
i Jrnza \ N2 m™n?

wn? M
_ 27_[_—8/2.’/\ bus/Q—le—u du - i
mn2a nen N°
M1
<2 Pr(s/2) Y —.
n=N ns
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oo

1
We know that if Re(s) > 1 then ) — converges, so indeed the last term can be made arbitrarily small. This
nS

n—-1

proves that the fi’s are uniformly Cauchy. By the proposition,

li li b) = li li b).
(a,b)in(lo’oo)kll{olofk(a7 ) kﬂ,(a’b)lﬁ%m)fk(a, )

Evaluating the RHS is highly analogous to the computation above, except this time we actually have ((s) for

the last term. Therefore,

£(5) :22 /;mts/Q_le_”mQ dt = 2721 (5)2)(5). 0

Problem: 7(c)

Show that the improper Riemann integral

f t—l(ts/Z +t(1s)/2)( Z e—ﬂ'tnz _ 1) dt

1

makes sense for all complex s.

Proof. We will again adopt the notion of convergent nets here. Just like before, we can rewrite the doubly-infinite
series minus 1 as 2 times a singly-infinite series and we can also interchange the summation and integral.

Define A to be the set of real numbers > 1 and b < b if b< ¥, and define

b k
L (b) =2 t—l ts/2+t(1—s)/2 e—'n'tn2 dt.
u(
1 n=1

Again, by part (a), for any k, blim fr(b) exists so the net condition (1) is satisfied.

Now we verify that f(b) form a uniformly Cauchy sequence as k - co. For M > N
M ,b 2
fu®) = v (®) =2 3 [ e g
n=N 71

X —mwtn?/2 b s/2-1 (1-5)/2\ —7wtn? /2
=2 > e f (t +t Ye dt
N 1

n

e—ﬂ'n2/2 [bAtKe—Trth/Q dt
1

NS

<2

1l
2

n

<2 o2 fbAt(K+1)—1et~(—wn2/2) dt
1

M=

Il
2

n

finite for each n

where A and K are some constants, as one between t¥/2~1 and t('=)/2 will surely decay and the total sum is

clearly possible to be bounded by AtX. Since we are looking at a finite sum, we can just leave the integral like

M 2
that, as long as each one is finite by part (a). It remains to show that » e ™™ /2 is finite, which we’ve shown
n=N

all the way back in problem 1(b). Therefore the net condition (2), and the proposition gives

/ t—1(ts/2+t(1—s)/2)( Z e—ﬂ'tn2 _1) dt =2 Z f t—l(t8/2+t(1—s)/2)e—7rtn2 dt. 0
1 n=171

n=—oo
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Problem: 7(d)

Show that for complex s with fRe(s) > 1, we have

_ _ 2 ® 1 s/2 (1-s)/2 . —mtn? _
£(s) = s(l—s)+f1 e +t )( Yo 1) dt.

n=—o0o

oo 1 oo
Proof. We first split / into f + [ :
0 0 1

f(S) — ﬁlts/Q—l( i e—ﬂtn2 _1) dt+f1°ots/2—1( i e—ﬂtn2 _1) dt. ("l,)

n=—o0o

Using u-substitution u := 1/t with du = —t~2d¢ and the result from problem 1(c), we have

1 00 1 =)
Ji ts/2‘1( 5 e_”t"Q—l) at= | u1_8/2( 5 e"”‘Q/"—l)(—tz)du
0 oo

_ f ul—s/2 ( Z e—7rn2/u _ 1) U_2 du
1 n=—oo

— f u—l—s/2 ( Z e—7rn2/u _ 1) ”
1 n=—oo

d
[prob 1(c)] = f u_l_s/2( > Ve - 1) du
1 n=—oo
_ foo u(—l—s)/2 i e—Trun2 _ i du
1 Vu

n=—oo
= foo t(‘l‘SW( i et 1) dt. (P)
1 n=-oo \/7_f
Substituting (V) into (M), we see that the difference between their sum and the (big) integral given in the
problem is
foot(*HW - L) - foot“H)/Q dt—foofs/?*l dt
1 Vi 1 1
S22 2
Ts-1 s s(1-s)
This proves the claim. O

Problem: 7(e)
Show that the zeta function satisfies the function equation
C(s) = 2875 L sin(ws/2)T(1 - 5)¢(1 - s).

You may assume that

I(s)I'(1-s) =

- for 0 < Re(s) <1
sin(7s)

and that
N

28—1

I'(s/2)((s +1)/2) =

I'(s).

10
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Proof. Notice from part (d) that £(s) = &(1-s). Thus,

£(s)m*/?
20 (s/2)

E(1-5)n02  g(s)n-P2

(s) = oT((1-5)/2)  20((1-s)/2)

and ((1-s) =

Therefore we can relate ((s) with ((1-s) by

R0 1O e L e N (CRE)
o0(s/2)  20((1-5)/2) (s/2)

¢(s)

T'(s/2)T(1-s/2)

Since sin(7s/2) = , the cyan term becomes
R DD (1 - )/2)

= sin(mrs/2)w (232 -5 -5 .
o (rs/2)x L (1= s/2)0((1 - )/2)

Using the second identity given, I'(1 - s/2)T'((1-s)/2) = 2—\/EF(1 - 3). Therefore,

C(s) =C(1-5)-sin(ms/2) - 7232 LZ T(1-35)

=257 L sin(ws/2)I(1 - 5)¢(1 - s). O
Problem: 7(f)
Given the above extension of ((s) to the complex plane, show that ((s) #0 unless s = -2k or Re(s) = 1/2.

Proof. 1 have discovered a truly remarkable proof which this margin is too small to contain. Alas, how could I

possibly cram it into the remaining 1/3 page below? O

11



