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Problem 1

(a) Let X be a set and (Y, d) a metric space. Let {fn}∞n=1 be a sequence of functions X → Y . Define what

it means for {fn}∞n=1 to converge uniformly to some function f ∶ X → Y . Also, given a sequence of

functions {gn}∞n=1 from X to a formed vector space (V, ∥ ⋅ ∥), define what it means for the series
∞
∑
n=1

gn

to converge uniformly.

(b) Recall that one way to characterize convergence of doubly-infinite series
∞
∑

n=−∞
gn is by requiring that

∞
∑
n=0

gn converges and that
∞
∑
n=1

g−n converges (pointwise, uniformly, etc.). Show that the doubly infinite

series
∞
∑

n=−∞
e−πtn

2

converges uniformly for t ∈ [a, b] assuming 0 < a < b.

(c) For a fixed t > 0, consider the function gt(x) = e−πtx
2

, a Gaussian with some normalization. You may

assume without proof that the Fourier transform ĝt(ξ) exists and is equal to eπξ
2/t/
√
t. Show that

∞
∑

n=−∞
e−πtn

2

= 1√
t

∞
∑

n=−∞
e−πn

2/t.

[Hint: Poisson summation formula.]

Solution.

(a) {fn}∞n=1 converges uniformly to f if the following criterion is met:

For all ϵ > 0, there exists N ∈ N such that whenever n ⩾ N , d(fn(x), f(x)) < ϵ for all x.

Likewise,
∞
∑
n=1

gn converges uniformly if the sequence of its partial sums converges uniformly, i.e., if

{hk}∞k=1 defined by hk ∶=
k

∑
i=1

gn

converges uniformly.
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(b) Proof. Notice that if f(x) = e−πxn
2

for x ∈ [a, b] as defined in the problem, then ∥f∥∞ = f(a) (because this

exponential function is strictly decreasing).

Consider the series of constants
∞
∑
n=1

e−πan
2

. Since we only focus on t ∈ [a, b], each term e−πtn
2

is bounded by

e−πan
2

. Therefore
∞
∑
n=1

e−πtn
2

⩽
∞
∑
n=1

e−πan
2

. Also, since exponentials are always positive, if we try to bound the

series, it does not hurt to add some extra terms:
∞
∑
n=0

e−πtn
2

⩽
∞
∑
n=0

e−πan
2

= ∑
k square

e−πak <
∞
∑
k=0

e−πak.

The last one is a geometric series with exponential growth rate 1/e < 1 so it converges to a finite number.

Therefore so is the first one, and clearly
∞
∑
i=1

e−πt(−n)
2

=
∞
∑
i=1

e−πtn
2

<
∞
∑
k=1

e−πak.

We just bounded both singly-infinite series of functions (with respect to ∥ ⋅ ∥∞) by a convergent series of

constants and so we can invoke the Weierstraß M-test and conclude that
∞
∑
n=0

e−πtn
2

and
∞
∑
n=1

e−πt(−n)
2

converges

uniformly on [a, b]. Hence
∞
∑

n=−∞
e−πtn

2

also converges uniformly.

(c) Poisson summation formula states that
∞
∑

n=−∞
f(n) =

∞
∑

n=−∞
f̂(n), and this is precisely what the equation is:

∞
∑

n=−∞
e−πtn

2

=
∞
∑

ξ=−∞

exp(−πξ2/t)√
t

= 1√
t

∞
∑

n=−∞
e−πn

2/t.

Problem 2

(a) Let V,W be normed vector spaces and let T ∶ V →W be a linear transformation. Define the operator

norm ∥T ∥op of T .

(b) Let V,W,Z be normed vector spaces and let S ∶ V → W and T ∶ W → Z be linear transformations.

Assume that both ∥T ∥op and ∥S∥op are finite. Show that

∥T ○ S∥op ⩽ ∥T ∥op∥S∥op.

Solution.

(a) ∥T ∥op = inf{L > 0 ∶ ∥T (v)∥ ⩽ L(v) for all v ∈ V } = sup
∥v∥=1

∥T (v)∥ = sup
∥v∥⩽1

∥T (v)∥ = sup
v≠0

∥T (v)∥
∥v∥

.

(b) Proof. The claim is trivial when one of them has 0 operator norm. For the nontrivial case, we will need to

use the fact that supremum of product ⩽ product of supremum:

∥T ○ S∥op = sup
∥v∥≠0

∥TS(v)∥
∥v∥

= sup
∥v∥≠0
S(v)≠0

∥TS(v)∥
∥v∥

= sup
∥v∥≠0
S(v)≠0

∥TS(v)∥
∥S(v)∥

⋅ ∥S(v)∥
∥v∥

⩽ sup
∥v∥≠0
S(v)≠0

∥TS(v)∥
∥S(v)∥

⋅ sup
∥v∥≠0
S(v)≠0

∥S(v)∥
∥v∥

= sup
S(v)≠0

∥TS(v)∥
∥S(v)∥

∥S∥op ⩽ ∥T ∥op∥S∥op.
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Problem 3

(a) Let U be an open subset of Rn and let F be a function from U to Rm. Define what it means for F to

be differentiable at p ∈ U with total derivative given by a linear transformation T ∶ Rn → Rm.

(b) (Second option) show that if such T exists then it is unique.

Solution.

(a) We say F is differentiable at p with total derivative T if

lim
v→0

F (p + v) − F (p) − T (v)
∥v∥

= 0.

(b) Proof. If T and S are distinct total derivatives of F at p, then substituting S and T into the definition above

and subtracting yields

lim
v→0

S(v) − T (v)
∥v∥

= lim
v→0

(S − T )(v)
∥v∥

= 0.

Now suppose for contradiction that S − T is not the zero linear transformation, i.e., there exists v0 satisfying

(S − T )(v0) ≠ 0. We consider cv0 where c ∈ R+. Letting c→ 0, we have cv0 → 0, and so

lim
c→0

(S − T )(cv0)
∥cv0∥

= lim
c→0

(S − T )(v0)
∥v0∥

≠ 0,

contradiction. Hence S − T must be the zero transformation, i.e., S = T . Hence the uniqueness.

Problem 4

(Second option) prove that C1 functions are differentiable: if U ⊂ Rn is open and F ∶ U → Rm a C1 function

on U , then F is differentiable at all p ∈ U with total derivative at p having the standard-basis matrix

(JF )p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂x1
(p) ⋯ ∂F1

∂xn
(p)

⋮ ⋱ ⋯

∂Fm

∂x1
(p) ⋯ ∂Fm

∂xn
(p)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. Let J ∶= (JF )p and let R(v) ∶= F (p+ v)−F (p)−J v. We want to show that R(v)/∥v∥→ 0 as v → 0. For

1 ⩽ i ⩽m, let Ri(v) be the ith coordinate of R(v) and likewise for Fi(v). By definition

Ri(v) = Fi(p + v) − Fi(p) − [
∂Fi

∂x1
(p) ⋯ ∂Fi

∂xn
(p)] v.

It suffices to show that for each i, Ri(v)/∥v∥→ 0 as v → 0.

Now let ϵ > 0 be given. We choose δ > 0 satisfying the following:

(1) If ∥v∥ < δ then p + v ∈ U (possible because U is open) and

(2) ∣∂Fi

∂xj
(p + v) − ∂Fi

∂xj
(p)∣ < ϵ

n
for 1 ⩽ j ⩽ n (possible because ∂Fi

∂xj
is continuous).
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We claim that this δ satisfies the ϵ − δ condition, i.e., if ∥v∥ < δ then ∣R(v)∣/∥v∥ < ϵ.

To see this, we first rewrite v =
n

∑
j=1

vjej (where ej ’s are the standard basis of Rn) and rewrite Ri(v) in the form

of a telescoping sum:

Ri(v) = Fi(p +
n

∑
i=1

vjej) − Fi(p) −
n

∑
j=1

vj
∂Fi

∂xj
(p)

= Fi(p +
n

∑
j=1

vjej) − Fi(p +
n−1
∑
j=1

vjej) − vn
∂Fi

∂xn
(p)

+ Fi(p +
n−1
∑
j=1

vjej) − Fi(p +
n−2
∑
j=1

vjej) − vn−1
∂Fi

∂vn−1
(p)

+⋯ + Fi(p + v1e1) − Fi(p) − v1
∂Fi

∂v1
(p).

Clearly there are n lines in total, and we will show that each line < ϵ/n using the MVT. For the (n+1−k)th line

(kth counting from bottom), since

g ∶ t↦ Fi(p +
k−1
∑
j=1

vjej + tek)

is differentiable on [0, vk] (because ∂F /∂xj exists on U), it’s well-defined to compute its derivative

g′(t) = ∂Fi

∂xk
(p +

k−1
∑
j=1

vjej + tek).

Therefore g(vk) − g(0) = g′(θ)(vk − 0) for some θ ∈ [0, vk], i.e.,

Fi(p +
k

∑
j=1

vjej) − Fi(p +
k−1
∑
j=1

vjej) = vk
∂Fi

∂xk
(p +

k−1
∑
j=1

vjej + θek).

Finally, since ∥(v1, ..., vk−1, θ,0, ...)∥ ⩽ ∥(v1, ..., vn)∥ = ∥v∥, we have

∥(n + 1 − k)th line∥ = ∥vk
∂Fi

∂xk
(p +

k−1
∑
j=1

vjej + θek) − vk
∂Fi

∂xk
(p)∥

= ∣vk ∣∥
∂Fi

∂xk
(p +

k−1
∑
j=1

vjej + θek∥ −
∂Fi

∂xk
(p)∥ ⩽ ∣vk ∣ϵ

n
,

and since ∣vj ∣ ⩽ ∥v∥ for all j,
Ri(v)
∥v∥

⩽
n

∑
j=1

∣vj ∣ϵ
n∥v∥

⩽
n

∑
j=1

ϵ

n
= ϵ.

This proves the claim.

Problem 5

Define F ∶ R3 → R2 by

F (x, y, z) = (4x2 + 4y2 − 4z2, x2 + y2 + z2).

(a) Compute the Jacobian matrix of F .

(b) Consider the level set F −1(1,1). Show that for all points (x, y, z) in this level set the Jacobian matrix

F has maximal rank.
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Solution.

(a) By definition,

(JF )(x,y,z) =
⎡⎢⎢⎢⎢⎢⎣

8x 8y −8z

2x 2y 2z

⎤⎥⎥⎥⎥⎥⎦
.

(b) Proof. We prove by contradiction. Suppose JF at some (x, y, z) ∈ F −1(1,1) is not of maximal rank. Then

it’s of rank at most 1. In particular, the following two matrices would be singular:

⎡⎢⎢⎢⎢⎢⎣

8x 8y

2x 2y

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

8y −8z

2y 2z

⎤⎥⎥⎥⎥⎥⎦
.

The first one is, of course, always singular, but if the second one is singular then z = 0 (multiply second row

by 4 and obtain 8z = −8z). Then

4x2 + 4y2 = 1 x2 + y2 = 1,

clearly a contradiction. This finishes the proof.

Problem 6

(1) Let β ∶= (x2y + z)dx + (xyz)dy + (x + yz2)dz, a 1-form on R3. Compute dβ.

(2) Let P (x),Q(x) be smooth functions from R to R. Consider the differential 1-form

α ∶= (P (x)y −Q(x))dx + dy

on R2. Let

µ(x) ∶= exp∫
x

0
P (t) dt.

Prove that the 1-form

µα = µ(x)(P (x)y −Q(x))dx + µ(x)dy

satisfies d(µα) = 0.

Solution.

(a) dβ = (2xydx + x2dy + dz) ∧ dx + (yzdx + xzdy + xydz) ∧ dy + (dx + z2dy + 2yzdz) ∧ dz

= (yz − x2)dx ∧ dy + (z2 − xy)dy ∧ dz.

(b) We will compute d(µα) by brute force. Note that the x-partial of µ(x)(P (x)y − Q(x)) does not matter

because eventually it vanishes with dx ∧ dx. Meanwhile,

∂

∂y
[µ(x)(P (x)y −Q(x))] = µ(x)P (x).

5
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Therefore,

d(µα) = µ(x)P (x)dy ∧ dx + µ′(x)dx ∧ dy

[chain rule] = µ(x)P (x)dy ∧ dx + µ(x)P (x)dx ∧ dy = 0.

Problem 7

Prove the Picard-Lindelöf Theorem: if U ⊂ Rm is open and F ∶ U → Rm is locally Lipschitz, then, given

p ∈ U , there exists a locally unique solution to the IVP γ′(t) = F (γ(t)) defined on (a, b) ∈ R with x(t0) = y0.

Proof. For convenience let t0 = 0 (the generic case can be obtained via the integral equation once the case t0 = 0

is proven). WLOG assume F is Lipschitz with constant L on all of U . Pick r > 0 such that N ∶= B(y0, r) ⊂ U .

Since N is closed and bounded in Rm, it is compact, on which the continuous image F (N) is also compact.

Hence there exists M ∈ R such that ∥F (x)∥ ⩽M for all x ∈ N .

Now pick τ > 0 sufficiently small such that τ <min(r/M,1/L). We claim that

(1) there exists γ ∶ (−τ, τ)→ N differentiable with γ′(t) = F (γ(t)), and

(2) such γ is unique.

Notice that solving the IVP γ′(t) = F (γ(t)), γ(0) = y0 is equivalent to solving

γ(t) = γ(0 + ∫
t

0
F (γ(s)) ds.

Since the space (C0([−τ, τ],N),dsup) is Banach, if we can show that

(Φ(γ))(t) ∶= y0 + ∫
t

0
F (γ(s)) ds

is a contraction, then by the Banach contraction mapping theorem, there exists a fixed point which would solve

our IVP. Clearly Φ(γ) is continuous, and for t ∈ [−τ, τ],

∥Φ(γ)(t) − y0∥ = ∥∫
t

0
F (γ(s)) ds ∥ ⩽M ∣t − 0∣ ⩽Mτ =M ⋅min(r/M,1/L) ⩽ r,

so indeed Φ(γ)(t) is always an element of C0([−τ, τ],N). Now we show that Φ is actually a contraction with

constant τL < 1. If γ, σ ∈ C0([−τ, τ],N), then

d(Φ(γ),Φ(σ)) = sup
t∈[−τ,τ]

∥ y0 + ∫
t

0
F (γ(s)) ds − y0 − ∫

t

0
F (σ(s)) ds ∥

= sup
t∈[−τ,τ]

∥∫
t

0
F (γ(s)) − F (σ(s)) ds ∥

⩽ sup
t∈[−τ,τ]

∣ t ∣ ⋅ sup
s∈[τ,τ]

∥F (γ(s)) − F (σ(s))∥

⩽ τ ⋅L sup
s∈[−τ,τ]

∥γ(s) − σ(s)∥ = τL ⋅ dsup(γ, σ).

Now we can invoke the Banach contraction mapping theorem and conclude that there exists a solution to the

IVP. Uniqueness follows from one of our HWs, in which we’ve shown that if γ ∶ (a, b) → U and σ ∶ (a′, b′) → U

are two solutions to the IVP then γ and σ must agree on (a, b) ∩ (a′, b′). Local uniqueness still holds.

6
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Alternate Problem 7

Problem: 7(a)

Let c > 0. For any complex number s, show that the improper Riemann integral

∫
∞

1
ts−1e−ct dt

converges. If the real part of s is greater than 0, prove the improper Riemann integral

∫
∞

0
ts−1e−ct dt

converges. When c = 1 this integral defines the Γ function.

Proof. For the first part, it suffices to show that the integrals ∫
b

1
ts−1e−ct dt is Cauchy; equivalently, it suffices

to show that when b1, b2 are sufficiently large, ∫
b2

b1
ts−1e−ct dt can be made arbitrarily small. Indeed, since

lim
t→∞
∣ts∣/ect/2 = lim

t→∞
tRe(s)/ect/2 = 0 (as given by the hint), we are able to find b1, b2 large enough such that

∣ts−1∣ ⩽ ect/2. Then we can bound the integral by

∫
b2

b1
ts−1e−ct dt ⩽ ∫

b2

b1
∣ts−1e−ct∣ dt ⩽ ∫

b2

b1
e−ct/2 dt.

The last term is much nicer, as

∫
∞

1
e−ct/2 dt = −2

c
e−ct/2∣

∞

1

= 2e−c/2

c
<∞,

which implies ∫
b2

b1
e−ct/2 dt→ 0 as min(b1, b2)→∞. This proves the first claim.

For the second claim, we only need to verify that ∫
1

0
ts−1e−ct dx is finite. Since c > 0 and t > 0, e−ct < 1, so

∫
1

0
ts−1e−ct dt < ∫

1

0
ts−1 dt ⩽ ∫

1

0
∣ts−1∣ dt = ∫

1

0
tRe(s−1) dt.

By assumption Re(s) > 0 so Re(s − 1) > −1. Even Calc I students would realize that this integral is finite.

Problem: 7(b)

For any complex number s with real part > 1, we want to define (a variant of) the Riemann ζ function using

the improper Riemann integral formula

ξ(s) ∶= ∫
∞

0
ts/2−1 (

∞
∑

n=−∞
e−πtn

2

− 1) dt.

Show that this improper Riemann integral exists and is given by

ξ(s) = 2π−s/2Γ(s/2)ζ(s)

7



MATH 425b Final Exam YQL

where

Γ(s) ∶= ∫
∞

0
ts−1e−t dt ζ(s) ∶=

∞
∑
n=1

1

ns
.

Proposition

For this problem, you may assume the following statement on nets. Let (A,⪯) be a directed set and consider

a sequence fn(a) of a real-valued nets fn ∶ A→ R. Assume that

(1) for each n, the net fn(a) converges (in a) to a limit Ln ∈ R and

(2) the nets fn converge uniformly (as a sequence of functions A→ R) to some net f ∶ A→ R.

Then Ln converge to some L ∈ R and lima f(a) exists and equals L. In other words,

lim
a

lim
n→∞

fn(a) = lim
n→∞

lim
a

fn(a).

Proof. Following the hint, we will first consider

∫
b

a
ts/2−1 (

∞
∑

n=−∞
e−πtn

2

− 1) dt

and then let a→ 0 and b→∞. By the first problem,
∞
∑

n=−∞
e−πtn

2

is the limit of a uniformly convergent series of

continuous functions and is therefore continuous. Thus the entire integrand is continuous and the integral from

a to b is well-defined.

In addition, since ∫ and ∑ for a uniformly convergent series are interchangeable,

∫
b

a
ts/2−1 (

−∞
∑

n=−1
e−πtn

2

+
∞
∑
n=1

e−πtn
2

) dt = 2
∞
∑
n=1
∫

b

a
ts/2−1e−πtn

2

dt.

Now define A to be the set of pairs of real numbers (a, b) with 0 < a < b where ⪯ is defined as (a, b) ⪯ (a′, b′) if

a′ < a < b < b′. Define

fk(a, b) ∶= 2
k

∑
n=1
∫

b

a
ts/2−1e−πtk

2

dt.

By part (a), since Re(s/2) > 0, lim
(a,b)→(0,∞)

fk(a, b) exists for any k. The net condition (1) is satisfied.

To show our construction of fk(a, b) also satisfy condition (2), we need to show {fk} is uniformly Cauchy. To

do this, we need a u-substitution u = πn2t. For M > N and arbitrary (a, b), this gives

fM(a, b) − fN(a, b) = 2
M

∑
n=N
∫

b

a
ts/2−1e−πtn

2

dt

= 2
M

∑
n=N
∫

πn2b

πn2a
( u

πn2
)
s/2−1

e−u
du
πn2

= 2π−s/2 ⋅ ∫
πn2b

πn2a
us/2−1e−u du ⋅

M

∑
n=N

1

ns

< 2π−s/2Γ(s/2)
M

∑
n=N

1

ns
.

8
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We know that if Re(s) > 1 then
∞
∑
n−1

1

ns
converges, so indeed the last term can be made arbitrarily small. This

proves that the fk’s are uniformly Cauchy. By the proposition,

lim
(a,b)→(0,∞)

lim
k→∞

fk(a, b) = lim
k→∞

lim
(a,b)→(0,∞)

fk(a, b).

Evaluating the RHS is highly analogous to the computation above, except this time we actually have ζ(s) for

the last term. Therefore,

ξ(s) = 2
∞
∑
n=1
∫
∞

0
ts/2−1e−πtn

2

dt = 2π−s/2Γ(s/2)ζ(s).

Problem: 7(c)

Show that the improper Riemann integral

∫
∞

1
t−1(ts/2 + t(1−s)/2)(

∞
∑

n=−∞
e−πtn

2

− 1) dt

makes sense for all complex s.

Proof. We will again adopt the notion of convergent nets here. Just like before, we can rewrite the doubly-infinite

series minus 1 as 2 times a singly-infinite series and we can also interchange the summation and integral.

Define A to be the set of real numbers > 1 and b ⪯ b′ if b < b′, and define

fk(b) ∶= 2∫
b

1
t−1(ts/2 + t(1−s)/2)(

k

∑
n=1

e−πtn
2

) dt.

Again, by part (a), for any k, lim
b→∞

fk(b) exists so the net condition (1) is satisfied.

Now we verify that fk(b) form a uniformly Cauchy sequence as k →∞. For M > N ,

fM(b) − fN(b) = 2
M

∑
n=N
∫

b

1
(ts/2−1 + t(1−s)/2)e−πtn

2

dt

= 2
M

∑
n=N

e−πtn
2/2 ∫

b

1
(ts/2−1 + t(1−s)/2)e−πtn

2/2 dt

< 2
M

∑
n=N

e−πn
2/2 ∫

b

1
AtKe−πtn

2/2 dt

⩽ 2
M

∑
n=N

e−πn
2/2 ∫

b

1
At(K+1)−1et⋅(−πn

2/2) dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
finite for each n

where A and K are some constants, as one between ts/2−1 and t(1−s)/2 will surely decay and the total sum is

clearly possible to be bounded by AtK . Since we are looking at a finite sum, we can just leave the integral like

that, as long as each one is finite by part (a). It remains to show that
M

∑
n=N

e−πm
2/2 is finite, which we’ve shown

all the way back in problem 1(b). Therefore the net condition (2), and the proposition gives

∫
∞

1
t−1(ts/2 + t(1−s)/2)(

∞
∑

n=−∞
e−πtn

2

− 1) dt = 2
∞
∑
n=1
∫
∞

1
t−1(ts/2 + t(1−s)/2)e−πtn

2

dt.
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Problem: 7(d)

Show that for complex s with Re(s) > 1, we have

ξ(s) = − 2

s(1 − s)
+ ∫

∞

1
t−1(ts/2 + t(1−s)/2)(

∞
∑

n=−∞
e−πtn

2

− 1) dt.

Proof. We first split ∫
∞

0
into ∫

1

0
+∫

∞

1
:

ξ(s) = ∫
1

0
ts/2−1 (

∞
∑

n=−∞
e−πtn

2

− 1) dt + ∫
∞

1
ts/2−1 (

∞
∑

n=−∞
e−πtn

2

− 1) dt. (ç)

Using u-substitution u ∶= 1/t with du = −t−2dt and the result from problem 1(c), we have

∫
1

0
ts/2−1 (

∞
∑

n=−∞
e−πtn

2

− 1) dt = ∫
1

∞
u1−s/2 (

∞
∑

n=−∞
e−πn

2/u − 1)(−t2) du

= ∫
∞

1
u1−s/2 (

∞
∑

n=−∞
e−πn

2/u − 1)u−2 du

= ∫
∞

1
u−1−s/2 (

∞
∑

n=−∞
e−πn

2/u − 1) du

[prob 1(c)] = ∫
∞

1
u−1−s/2 (

∞
∑

n=−∞

√
ue−πn

2u − 1) du

= ∫
∞

1
u(−1−s)/2 (

∞
∑

n=−∞
e−πun

2

− 1√
u
) du

= ∫
∞

1
t(−1−s)/2 (

∞
∑

n=−∞
e−πtn

2

− 1√
t
) dt. (à)

Substituting (à) into (ç), we see that the difference between their sum and the (big) integral given in the

problem is

∫
∞

1
t(−s−1)/2 (1 − 1√

t
) dt = ∫

∞

1
t(−s−1)/2 dt − ∫

∞

1
t−s/2−1 dt

= 2

s − 1
− 2

s
= − 2

s(1 − s)
.

This proves the claim.

Problem: 7(e)

Show that the zeta function satisfies the function equation

ζ(s) = 2sπs−1 sin(πs/2)Γ(1 − s)ζ(1 − s).

You may assume that

Γ(s)Γ(1 − s) = π

sin(πs)
for 0 <Re(s) < 1

and that

Γ(s/2)Γ((s + 1)/2) =
√
π

2s−1
Γ(s).

10
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Proof. Notice from part (d) that ξ(s) = ξ(1 − s). Thus,

ζ(s) = ξ(s)πs/2

2Γ(s/2)
and ζ(1 − s) = ξ(1 − s)π(1−s)/2

2Γ((1 − s)/2)
= ξ(s)π(1−s)/2

2Γ((1 − s)/2)
.

Therefore we can relate ζ(s) with ζ(1 − s) by

ζ(s) = ξ(s)πs/2

2Γ(s/2)
= ξ(s)π(1−s)/2

2Γ((1 − s)/2)
⋅ π
(2s−1)/2Γ((1 − s)/2)

Γ(s/2)
.

Since sin(πs/2) = π

Γ(s/2)Γ(1 − s/2)
, the cyan term becomes

π(2s−1)/2Γ((1 − s)/2)
Γ(s/2)

= sin(πs/2)π(2s−3)/2Γ(1 − s/2)Γ((1 − s)/2).

Using the second identity given, Γ(1 − s/2)Γ((1 − s)/2) =
√
π

2−s
Γ(1 − s). Therefore,

ζ(s) = ζ(1 − s) ⋅ sin(πs/2) ⋅ π(2s−3)/2 ⋅
√
π

2−s
⋅ Γ(1 − s)

= 2sπs−1 sin(πs/2)Γ(1 − s)ζ(1 − s).

Problem: 7(f)

Given the above extension of ζ(s) to the complex plane, show that ζ(s) ≠ 0 unless s = −2k or Re(s) = 1/2.

Proof. I have discovered a truly remarkable proof which this margin is too small to contain. Alas, how could I

possibly cram it into the remaining 1/3 page below?
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