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Problem 1

(a) Let V be a vector space. A norm is a map ∥ ⋅ ∥ ∶ V → [0,∞) satisfying the following:

(1) non-degeneracy: ∥v∥ ⩾ 0 and ∥v∥ = 0 if and only if v = 0,

(2) absolute homogeneity: ∥λx∥ = ∣λ∣∥x∥, and

(3) subadditivity: ∥u + v∥ ⩽ ∥u∥ + ∥v∥,

where λ ∈ K (R or C) and u, v are arbitrary elements of V . A vector space equipped with such a norm is
called a normed vector space, written (V, ∥ ⋅ ∥). A normed space is Banach if it is complete with respect
to that norm, i.e., every Cauchy sequence converges.

(b) Since
∞
∑
k=1
∥vk∥ converges, in particular we have that it is also Cauchy. Let ϵ > 0 be given. There exists some

N ∈ N such that if m > n ⩾ N then
n

∑
k=m
∥vk∥ < ϵ. Then, for the same N , if m > n ⩾ N , we have

∥
n

∑
k=1

vk −
m

∑
k=1

vk∥ = ∥
n

∑
k=m

vk∥ ⩽
n

∑
k=m
∥vk∥ < ϵ,

where the ⩽ is given by triangle inequality. Therefore the series of vk forms a Cauchy sequence in a Banach
space, and thus it converges.

Problem 2

(a) Let ϵ > 0 be given. By the uniform convergence of {fn}, there exists N ∈ N such that ∥fn − f∥sup < ϵ/(b − a)
whenever n ⩾ N . Therefore,

∣Fn(x) − F (x)∣ = ∣∫
x

a
fn(t̃) dt̃ − ∫

x

a
f(t̃) dt̃ ∣

= ∣∫
x

a
fn(t̃) − f(t̃) dt̃ ∣

⩽ ∫
x

a
∣fn(t̃) − f(t̃)∣ dt̃

< (x − a) ϵ

b − a
⩽ ϵ,

and the uniform convergence of {Fn} to F follows.
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(b) Recall the example given on one of the homeworks: let fn(x) ∶=
√
x2 + 1/n and f(x) ∶= ∣x∣ on [1,1]. It is clear

that fn’s are differentiable. For n ⩾ 0,

√
x2 + 1/n − ∣x∣ =

√
x2 + 1/n − x ⩽ (x + 1/n2) − x = 1/n2

regardless of the value of f , and when n < 0 the argument can be treated similarly. Thus fn → f uniformly
but clearly f is not differentiable.

Problem 3

(a) The exponential growth rate, e.g.r., is defined to be α ∶= lim sup
k→∞

k
√
∣ak ∣.

(b) If α < 1, there exists β ∈ (α,1). By the definition of lim sup there exists a sufficiently large N such that if
n ⩾ N then n

√
∣an∣ is close enough to α and thus < β. Now construct a sequence (βn, βn+1, . . . ). Since, for

n ⩾ N , ∣an∣ < βn and
∞
∑
k=n

βn converges, so does the series of ak.

(c) If α > 1, there exists β ∈ (1, α). By definition,

lim
n→∞

sup
k̃⩾n

k̃

√
∣ak̃ ∣ = α > β,

so sup
k̃⩾n

k̃

√
∣ak̃ ∣ is always greater than β, regardless of n. This means that there exists infinitely many k̃ such

that k̃
√
∣ak̃ ∣ > β, i.e., ∣ak̃ ∣ > β

k̃. Therefore lim
k→∞

ak ≠ 0 and the series does not converge.

Problem 4

(a) A net f is said to be Cauchy if, for any ϵ > 0, there exists a0 ∈ A such that d(f(a1), f(a2)) < ϵ whenever
a0 ⪯ a1 and a0 ⪯ a2.

(b) Let f ∶ A → X be Cauchy. By Cauchy-ness, there exists a1 ∈ A such that if a0 ⪯ a′ and a0 ⪯ a′′ then
d(f(a′), f(a′′)) < ϵ = 1. Now pick a2 ∈ A such that a1 ⪯ a2 and d(f(a′), f(a′′)) < 1/2 whenever a2 ⪯ a′ and
a2 ⪯ a′′. (This (a1 ⪯ a2) can always be made possible by the upper bound property of a directed set.) Keep
decreasing ϵ to 1/3,1/4 . . . and we obtain a sequence a1 ⪯ a2 ⪯ a3 . . . that satisfies the corresponding Cauchy
requirement. Define a sequence {xn} ⊂ X by xn ∶= f(an). Immediately we see that {xn} is Cauchy in X:
for ϵ > 0, picking N > 1/ϵ gives 1/N < ϵ and so for all m,n ⩾ N , aN ⪯ am and aN ⪯ am, which implies
d(f(am), f(an)) = d(xm, xn) < 1/N < ϵ.

By the completeness of X, {xn} → L for some L ∈ X. Given ϵ > 0, there exists N1 such that d(xn, L) < ϵ/2
whenever n ⩾ N1. There also exists N2 such that (aN2 ⪯ a′, a′′ ∈ A Ô⇒ d(f(a′), f(a′′)) < ϵ/2). Define
N ∶=max{N1,N2}. Then, for all a ∈ A with aN ⪯ a, we have

d(f(a) −L) ⩽ d(f(a) − f(aN)) + d(f(aN) −L) <
ϵ

2
+ ϵ

2
= ϵ,

which completes the proof that f is a convergent net.
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Problem 5

Since Y is complete, for each x, the sequence {fn(x)}n⩾1 is not only Cauchy but also convergent. Therefore we can
define f to be the function to which {fn} converges pointwise.
Now let ϵ > 0 be given. By the uniform Cauchy-ness, there exists N ∈ N such that ∥fm − fn∥sup < ϵ/2 whenever
m,n ⩾ N , i.e., ∣fm(x) − fn(x)∣ < ϵ/2 for all x in the domain. Let n > N . Then, for every m > N we have

∣fn(x) − f(x)∣ ⩽ ∣fn(x) − fm(x)∣ + ∣fm(x) − f(x)∣ <
ϵ

2
+ ∣fm(x) − f(x)∣

where the second term can be made arbitrarily small, in particular < ϵ/2 by setting m large, but we don’t care about
m eventually since it does not appear on the LHS; its mere existence is to show that ∣fn(x) − f(x)∣ can indeed be
bounded by ϵ. Hence fn → f uniformly.
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