MATH 425b Midterm IT

Qilin Ye

April 3, 23:15 to April 4, 01:45

Problem 1

Prove the Weierstrafy Approzimation Theorem. In particular, prove that any f e C°([0,1],R) is the uniform

limit of a sequence of Bernstein polynomials.

Proof. Let f e C°([0,1],R) be given. Define
() = Z f(k/n)ri(x) where ri(x) = (Z) xk(l - a:)"_k
k=0
(the Bernstein polynomials). We first derive some important identities that will become useful.

(1) Recall from binomial expansion,

@y =3 (1)t (1)

k=0

Differentiating both sides with respect to x and then multiplying by = give

na(z+y)" = é (Z)kmky"_k. (2)

Differentiating (1) twice and multiplying both sides by x? give

n(n — (E2 T n-2 _ (1 _ .%'k n—k.
(=12 9) ™ = 3 (G-t 0

Setting y =1 -z, (1), (2), and (3) give

i re(x) = 1,§krk(x) =nx, and i k(k-1)ri(z) =n(n-1)>%

k=0 k=0
(2) The variance of binomial distribution is nx(l - x):

(k? - 2nxk + n?2?)ry ()

M=

i (k- nz)?*ry(z) =
k=0

k=0

M=

Erp(z) - 2nz Y. kr(z) + n*2* Y. ry(z)
k=0

k=0 k=0

= [n(n -1)% + nz] - 2n*z? + n?a?

=nz(l-x).

1
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Back to the main proof. Let € > 0 be given. Since [0,1] is compact and f continuous, it is uniformly

continuous on [0,1]. Therefore, there exists § > 0 such that
€
o -yl <d = f(2) - f(y) <3

In addition, f([0,1]) is compact (thus bounded), so there exists M € R such that |f(z)| < M for all x € [0,1].
Let N > M/(e6?) be a sufficiently large integer. Since Y 7 (z) =1, f(z) is the same as Y. f(x)rj(z). Then,

k=0 k=0
(@) = 1)1 = | 3 FOkmr(e) - 3 F(@)reta)
[f(k/n) = f(x)]re(x)
k=0
< (kfn) = f(@)] ()] + Zl f(k[n) = f(@)]ri(z)| denote by Y7 &3
k=0 T 2
lz— £ <5 |mf |>
< (e/2)re(z) + > 2Mry(x) - 1 €/2 by unif. cont; 2M by boundedness
1 2
k= na? . [kfnox|\* _ [k~ naf’
< % + Z2M1"k(£li). (n:)a; since 1 < ( 7;055 ) = (m;l)l;
M n
<% 2252 Z|k nal*ry(x)
<<y M <Sif-eforn>N simple calculus:z(1 —x) < E
2 2n6% 2 2 T ’ !
O

..and we are done with the proof.

Problem 2

(a) Let (X,d) be a metric space. Define what it means for f: X - X to be a contraction.

(b) State and prove the Banach contraction mapping theorem.

[ Definition: 2(a)

f is a contraction if there exists k < 1 such that d(f(z), f(y)) < kd(z,y) for all z,y € X. If such k <1 does
not exist but still d( f(x), f(y)) <d(x,y), we call f a weak contraction.

Theorem: Banach contraction mapping theorem, 2(b)

Let (X,d) be complete and let f: X — X be a contraction. Then f has a unique fixed point.

Proof. Pick any 9 € X. Define iteratively z, = f(z,-1) (so 21 = f(xo) and so on). Let £ < 1 be the “contraction
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constant” for f, i.e., d(f(x), f(y)) < kd(x,y) for all z,y € X. It follows that
d(xp, Tpe1) <LlA(Tp-1,25) <+ <Ld(20,271).

We now show that the sequence {x,} is Cauchy. Let € > 0 be given. For any m,n, we have (assuming WLOG

m<n)
n—1 oo
(@, 2n) < Y. d(@p, Tpe1) < Y, d(@k, The1)
k=m k=m

< Z d(fEm, Tm+1 )Ek
k=0

< gmd(lﬂo, 1’1)
1/
To bound this by ¢, we simply need to choose N large enough such that ¢Nd(xg,21)/(1-¢) < €. Then for any
m,n > N we obtain the desired inequality. Hence {z,} is Cauchy and, since (X,d) is complete, convergent to
x € X, say. Then
x=lim 2, = ilm z,41 = lim f(z,) = f(lim z,) = f(z)
n—o0o n—o00o n—o00o n—o0o
where the second last = is by continuity of f. Hence x is a fixed point. Uniqueness is immediate as if z,y are

both fixed points then
z=f(z),y=[fly) = d(z,y) =d(f(2), f(y)) > kd(z,y)

unless d(z,y) =0, i.e., fixed point is unique. O
Problem 3

Define what it means for a subset A of a metric space (X,d) to be dense. Prove the §-density lemma, i.e.,
if X is compact and A = {a1,as, ...} is countably dense then, for ¢ > 0, there exists N € N such that for all

x € X, for some 1<i< N we have d(z,a;) < 4.

[ Definition: Dense subsets

Let (X,d) be a metric space. We say A c X is dense in X if A = X. Equivalently, A is dense in X if, for

any € >0 and for all x € X, there exists a € A such that d(z,a) <e.

Proof of the §-density lemma. (Without Dini’s theorem unfortunately; I wanted to secure the points...) Con-

sider the open covering | J D; where D; := B(a;,0), i.e., the d-ball around a;. This is an open covering of X
i>1
because {a;} is dense in X (and so for all z € X, there exists a; € {a;} with d(z,a;) <9, i.e., x € B(a;,0)). By
N
the compactness of X, this open covering can be reduced to a finite subcovering, say | J D;. Then any z € X is
i=1
included in a §-ball around some a; € {a1,...,ay}, and this proves the claim. O
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Problem 4

Let f:R — C be a suitably nice function. Write down the integral defining the Fourier transform f (&) for

¢ € R. Using Fourier transforms, find one solution f(¢) to the differential equation (and check explicitly)

f/(t) +2f(t) = cos(2nt).

Solution

Firstly, for f € R - C, we have
F© = [ f@)e e an.

Since e = cos@ +isin @, we have

2cos b = cos O + cos(—0) +isin(f) + isin(-0) = e’ + 7.

Therefore, cos(27t) = (e2™ + ¢27) /2. Define this to be g(t). It follows that

96 = [ gte e ar
_ / 627rite—27ri£t/2 dt + f 6727rit6—27m'§t/2 dt

[ [e)

- [Tty [T em0
019 +5(-1-6)
. |

Recall from HW10 that if f/(¢) + 2f(t) = g(¢) then

mm5+ﬂf@)=§@)==>f@):50_i;;ﬁ;1_0'

Using the Fourier inversion formula we have

f@) = [ f©emie ag

2mix

75 e [Ts S
= 1-¢)—— dé+ / -1-¢§)——
e27ri§r e27‘ri£z
= . + .
4mié +4 =1 4mié +4 e=-1
e27riw e—27ri;v
= =+ s
4+4m  4-4m
which is is the solution to the inhomogeneous system. Verification:
271'7;62#” 27T7:€_27Ti$ 2627\'1’1 26—271'im

"(z) +2 = - + +
fi(x)+2f () 4 + 4mi 4-4mi  4+4m 4-4mi
B (2+27Ti)€2wix N (2_27.”')6—2#1';8
N 4+4mi 4 —4mi

e27riw + e—27ri:r
= f = COS(27T.13).
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Problem 5
Define f ¢ Cger(R,(C) by setting f(z) = (1/2 - x)? for z € [0,1] and extending f periodically to all of R.

(a) Compute the Fourier coefficients f (n) for all n € Z and write down the corresponding Fourier series as

a doubly infinite sum of exponentials.

(b) Prove that the Fourier series converge uniformly to f.
2

1o
Prove . — = —.
(c) rove 207G

Solution: 5(a)

For n =0 it is clear enough that

|

E.

0=0

£(0) = fol (12 - 6)? 40 = —é(1/2 )

For n 0, we first compute f(n) for n € [0,1]. First notice that

. 1 _ 1 _ 1 4 1 4
F(n) = f F(0)e~27m0 49 = f 270 14 40 — f 270 49 + f e 2rindg2 4.
0 0 0 0

With Euler’s identity, the first integral becomes

sin(27nd) . i cos(2mnd) ]1

1
1 f cos(2mnl) —isin(27nd) df = !
4 Jo 4 2mn 2mn

6=0
1
:87(_7(04-7;—0—1'):0.

The second one, using integration by parts (u := 6 and du := e"27"?df) and Euler’s identity, becomes

1 . -27ind 1 ,—2mind 1 1
[ 6*27{7.?7,90(19:_067. +[ e ' do = — : +0=— .
0 2min 0o 2min 2min 2min

1

=0
Likewise, the third term becomes

1

1 ) 92 —2mind 190 —2minb
f 6—271’171902 de = € : + f € . deo
0 =2min |,_, Jo 2min
1 1 1 . 1 1
e+ — [ e .
2min  min Jo 2min  2mw2n?
Therefore,
A 1 1 1 1
=0+ - + = .
f(n) 2min  2min 2w2n?  272n?2
Thus,

oo e?ﬂ'ine

= P Tin 1
f(9)=n:§_:mf(n)€2 9=ﬁ+ > PYCRCE

Tr=—00
z#0

Also see (b) for an equivalent version using a single infinite sum, with which it is easy to extend f periodically

to all of R.
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Proof of 5(b). First notice that, from above, when n # 0 we have
1
+e
 2712n2 ™

cos(2mnd)

—27in6
)=

f(n)e27r7,m9 + f( TL)@ 2mind _ (62772’719

n2

Therefore, an alternate expression to the doubly infinite sum is

1 & cos(2mnh)
fO) =15+ 2 — 5

Since cos(2mné) is periodic on [0, 1], we can easily extend f to all of R without much modification.

Let e, () := e72™"% Tt has been shown previously that [ex| = 1. Since

1 n

TP

1
2m2k2

55+ Xl @K = 5+ 3 el

k=1

H k 7T2k:2 €k 2k:2

and the RHS clearly converges by integral test against f(z) = 1/(2722?%), the Weierstrafs M-test tells us that the
LHS converges absolutely uniformly to some function. In another homework problem we have shown that the
partial Fourier sums of f (i.e., the LHS) converge to f in | -|z2. Since limits are unique, it must be the case

that the LHS converge uniformly to f. O

Proof of 5(c). If we consider the Fourier series at f(0), we get

1 1 &1

P AC R TR M T R

> 1 1 1 2
ZIT_ 2[1_5] %, as desired. O




