
MATH 425b Midterm II

Qilin Ye

April 3, 23:15 to April 4, 01:45

Problem 1

Prove the Weierstraß Approximation Theorem. In particular, prove that any f ∈ C0([0,1],R) is the uniform

limit of a sequence of Bernstein polynomials.

Proof. Let f ∈ C0([0,1],R) be given. Define

pn(x) ∶=
n

∑
k=0

f(k/n)rk(x) where rk(x) = (
n

k
) xk(1 − x)n−k

(the Bernstein polynomials). We first derive some important identities that will become useful.

(1) Recall from binomial expansion,

(x + y)n =
n

∑
k=0
(n
k
)xkyn−k. (1)

Differentiating both sides with respect to x and then multiplying by x give

nx(x + y)n−1 =
n

∑
k=0
(n
k
)kxkyn−k. (2)

Differentiating (1) twice and multiplying both sides by x2 give

n(n − 1)x2(x + y)n−2 =
n

∑
k=0
(n
k
)k(k − 1)xkyn−k. (3)

Setting y = 1 − x, (1), (2), and (3) give

n

∑
k=0

rk(x) = 1,
n

∑
k=0

krk(x) = nx, and
n

∑
k=0

k(k − 1)rk(x) = n(n − 1)2.

(2) The variance of binomial distribution is nx(1 − x):

n

∑
k=0
(k − nx)2rk(x) =

n

∑
k=0
(k2 − 2nxk + n2x2)rk(x)

=
n

∑
k=0

k2rk(x) − 2nx
n

∑
k=0

krk(x) + n2x2
n

∑
k=0

rk(x)

= [n(n − 1)2 + nx] − 2n2x2 + n2x2

= nx(1 − x).
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Back to the main proof. Let ϵ > 0 be given. Since [0,1] is compact and f continuous, it is uniformly

continuous on [0,1]. Therefore, there exists δ > 0 such that

∣x − y∣ < δ Ô⇒ f(x) − f(y) < ϵ

2
.

In addition, f([0,1]) is compact (thus bounded), so there exists M ∈ R such that ∣f(x)∣ < M for all x ∈ [0,1].

Let N ⩾M/(ϵδ2) be a sufficiently large integer. Since
n

∑
k=0

rk(x) = 1, f(x) is the same as
n

∑
k=0

f(x)rk(x). Then,

∣pn(x) − f(x)∣ = ∣
n

∑
k=0

f(k/n)rk(x) −
n

∑
k=0

f(x)rk(x)∣

= ∣
n

∑
k=0
[f(k/n) − f(x)] rk(x)∣

⩽
n

∑
k=0

∣x− k
n ∣<δ

∣[f(k/n) − f(x)] rk(x)∣ +
n

∑
k=0

∣x− k
n ∣⩾δ

∣[f(k/n) − f(x)] rk(x)∣ denote by ∑
1

&∑
2

<∑
1

(ϵ/2)rk(x) +∑
2

2Mrk(x) ⋅ 1 ϵ/2 by unif. cont; 2M by boundedness

⩽ ϵ

2
+∑

2

2Mrk(x) ⋅
∣k − nx∣2

(nδ)2
since 1 ⩽ ( ∣k/n0x∣

δ
)
2

= ∣k − nx∣
2

(nδ)2

⩽ ϵ

2
+ 2M

n2δ2

n

∑
k=1
∣k − nx∣2rk(x)

= ϵ

2
+ 2M

n2δ2
nx(1 − x) = ϵ

2
+ 2Mx(1 − x)

nδ2

⩽ ϵ

2
+ M

2nδ2
< ϵ

2
+ ϵ

2
= ϵ for n ⩾ N. simple calculus:x(1 − x) ⩽ 1

4

. . . and we are done with the proof.

Problem 2

(a) Let (X,d) be a metric space. Define what it means for f ∶X →X to be a contraction.

(b) State and prove the Banach contraction mapping theorem.

Definition: 2(a)

f is a contraction if there exists k < 1 such that d(f(x), f(y)) ⩽ kd(x, y) for all x, y ∈X. If such k < 1 does

not exist but still d(f(x), f(y)) < d(x, y), we call f a weak contraction.

Theorem: Banach contraction mapping theorem, 2(b)

Let (X,d) be complete and let f ∶X →X be a contraction. Then f has a unique fixed point.

Proof. Pick any x0 ∈X. Define iteratively xn = f(xn−1) (so x1 = f(x0) and so on). Let ℓ < 1 be the “contraction
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constant” for f , i.e., d(f(x), f(y)) ⩽ kd(x, y) for all x, y ∈X. It follows that

d(xn, xn+1) ⩽ ℓd(xn−1, xn) ⩽ ⋅ ⋅ ⋅ ⩽ ℓnd(x0, x1).

We now show that the sequence {xn} is Cauchy. Let ϵ > 0 be given. For any m,n, we have (assuming WLOG

m < n)

d(xm, xn) ⩽
n−1
∑
k=m

d(xk, xk+1) ⩽
∞
∑
k=m

d(xk, xk+1)

⩽
∞
∑
k=0

d(xm, xm+1)ℓk

⩽ ℓmd(x0, x1)
1 − ℓ

.

To bound this by ϵ, we simply need to choose N large enough such that ℓNd(x0, x1)/(1 − ℓ) < ϵ. Then for any

m,n ⩾ N we obtain the desired inequality. Hence {xn} is Cauchy and, since (X,d) is complete, convergent to

x ∈X, say. Then

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x)

where the second last = is by continuity of f . Hence x is a fixed point. Uniqueness is immediate as if x, y are

both fixed points then

x = f(x), y = f(y) Ô⇒ d(x, y) = d(f(x), f(y)) > kd(x, y)

unless d(x, y) = 0, i.e., fixed point is unique.

Problem 3

Define what it means for a subset A of a metric space (X,d) to be dense. Prove the δ-density lemma, i.e.,

if X is compact and A = {a1, a2, . . .} is countably dense then, for δ > 0, there exists N ∈ N such that for all

x ∈X, for some 1 ⩽ i ⩽ N we have d(x, ai) < δ.

Definition: Dense subsets

Let (X,d) be a metric space. We say A ⊂ X is dense in X if A = X. Equivalently, A is dense in X if, for

any ϵ > 0 and for all x ∈X, there exists a ∈ A such that d(x, a) < ϵ.

Proof of the δ-density lemma. (Without Dini’s theorem unfortunately; I wanted to secure the points. . . ) Con-

sider the open covering ⋃
i⩾1

Di where Di ∶= B(ai, δ), i.e., the δ-ball around ai. This is an open covering of X

because {ai} is dense in X (and so for all x ∈ X, there exists ai ∈ {ai} with d(x, ai) < δ, i.e., x ∈ B(ai, δ)). By

the compactness of X, this open covering can be reduced to a finite subcovering, say
N

⋃
i=1

Di. Then any x ∈ X is

included in a δ-ball around some ai ∈ {a1, . . . , aN}, and this proves the claim.
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Problem 4

Let f ∶ R → C be a suitably nice function. Write down the integral defining the Fourier transform f̂(ξ) for

ξ ∈ R. Using Fourier transforms, find one solution f(t) to the differential equation (and check explicitly)

f ′(t) + 2f(t) = cos(2πt).

Solution

Firstly, for f ∈ R→ C, we have

f̂(ξ) = ∫
∞

−∞
f(x)e−2πiξx dx.

Since eiθ = cos θ + i sin θ, we have

2 cos θ = cos θ + cos(−θ) + i sin(θ) + i sin(−θ) = eiθ + e−iθ.

Therefore, cos(2πt) = (e2πit + e−2πit)/2. Define this to be g(t). It follows that

ĝ(ξ) = ∫
∞

−∞
g(t)e−2πiξt dt

= ∫
∞

−∞
e2πite−2πiξt/2 dt + ∫

∞

−∞
e−2πite−2πiξt/2 dt

= ∫
∞

−∞
e2πit(1−ξ)/2 dt + ∫

∞

−∞
e2πit(−1−ξ)/2 dx

= δ(1 − ξ) + δ(−1 − ξ)
2

.

Recall from HW10 that if f ′(t) + 2f(t) = g(t) then

[2πiξ + 2] f̂(ξ) = ĝ(ξ) Ô⇒ f̂(ξ) = δ(1 − ξ) + δ(−1 − ξ)
4πiξ + 4

.

Using the Fourier inversion formula we have

f(x) = ∫
∞

−∞
f̂(ξ)e2πiξx dξ

= ∫
∞

−∞
δ(1 − ξ) e2πiξx

4πiξ + 4
dξ + ∫

∞

−∞
δ(−1 − ξ) e2πiξx

4πiξ + 4
dξ

= e2πiξx

4πiξ + 4
∣
ξ=1
+ e2πiξx

4πiξ + 4
∣
ξ=−1

= e2πix

4 + 4πi
+ e−2πix

4 − 4πi
,

which is is the solution to the inhomogeneous system. Verification:

f ′(x) + 2f(x) = 2πie2πix

4 + 4πi
− 2πie−2πix

4 − 4πi
+ 2e2πix

4 + 4πi
+ 2e−2πix

4 − 4πi

= (2 + 2πi)e
2πix

4 + 4πi
+ (2 − 2πi)e

−2πix

4 − 4πi

= e2πix + e−2πix

2
= cos(2πx).
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Problem 5

Define f ∈ C0
per(R,C) by setting f(x) = (1/2 − x)2 for x ∈ [0,1] and extending f periodically to all of R.

(a) Compute the Fourier coefficients f̂(n) for all n ∈ Z and write down the corresponding Fourier series as

a doubly infinite sum of exponentials.

(b) Prove that the Fourier series converge uniformly to f .

(c) Prove
∞
∑
n=1

1

n2
= π2

6
.

Solution: 5(a)

For n = 0 it is clear enough that

f̂(0) = ∫
1

0
e0(1/2 − θ)2 dθ = −1

3
(1/2 − θ)3∣

1

θ=0
= 1

12
.

For n ≠ 0, we first compute f̂(n) for n ∈ [0,1]. First notice that

f̂(n) = ∫
1

0
f(θ)e−2πinθ dθ = ∫

1

0
e−2πinθ/4 dθ − ∫

1

0
e−2πinθθ dθ + ∫

1

0
e−2πinθθ2 dθ.

With Euler’s identity, the first integral becomes

1

4
∫

1

0
cos(2πnθ) − i sin(2πnθ) dθ = 1

4
[ sin(2πnθ)

2πn
+ i cos(2πnθ)

2πn
]
1

θ=0

= 1

8πn
(0 + i − 0 − i) = 0.

The second one, using integration by parts (u ∶= θ and du ∶= e−2πinθdθ) and Euler’s identity, becomes

∫
1

0
e−2πinθθ dθ = −θe

−2πinθ

2πin
∣
1

θ=0
+ ∫

1

0

e−2πinθ

2πin
dθ = − 1

2πin
+ 0 = − 1

2πin
.

Likewise, the third term becomes

∫
1

0
e−2πinθθ2 dθ = θ2e−2πinθ

−2πin
∣
1

θ=0
+ ∫

1

0

2θe−2πinθ

2πin
dθ

= − 1

2πin
+ 1

πin
∫

1

0
θe−2πinθ dθ = − 1

2πin
+ 1

2π2n2
.

Therefore,

f̂(n) = 0 + 1

2πin
− 1

2πin
+ 1

2π2n2
= 1

2π2n2
.

Thus,

f(θ) =
∞
∑

n=−∞
f̂(n)e2πinθ = 1

12
+

∞
∑

x=−∞
x≠0

e2πinθ

2π2n2
.

Also see (b) for an equivalent version using a single infinite sum, with which it is easy to extend f periodically

to all of R.
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Proof of 5(b). First notice that, from above, when n ≠ 0 we have

f̂(n)e2πinθ + f̂(−n)e−2πinθ = 1

2π2n2
(e2πinθ + e−2πinθ) = cos(2πnθ)

π2n2
.

Therefore, an alternate expression to the doubly infinite sum is

f(θ) = 1

12
+
∞
∑
n=1

cos(2πnθ)
π2n2

.

Since cos(2πnθ) is periodic on [0,1], we can easily extend f to all of R without much modification.

Let en(x) ∶= e−2πinx. It has been shown previously that ∥ek∥ = 1. Since

∥ 1

12
+

n

∑
k=1

1

2π2k2
ek∥ ⩽

1

12
+

n

∑
k=1
∥ek/(2π2k2)∥ = 1

12
+

n

∑
k=1
∥ek∥∣

1

2π2k2
∣ = 1

12
+

n

∑
1

∣ 1

2π2k2
∣

and the RHS clearly converges by integral test against f(x) = 1/(2π2x2), the Weierstraß M-test tells us that the

LHS converges absolutely uniformly to some function. In another homework problem we have shown that the

partial Fourier sums of f (i.e., the LHS) converge to f in ∥ ⋅ ∥L2 . Since limits are unique, it must be the case

that the LHS converge uniformly to f .

Proof of 5(c). If we consider the Fourier series at f(0), we get

1

4
= f(0) = 1

12
+
∞
∑
k=1

1

π2k2
Ô⇒

∞
∑
k=1

1

k2
= π2 [1

4
− 1

12
] = π2

6
, as desired.
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