
General Remarks

(1) About this file:

(a) Who – you know who.

(b) What – lecture notes for USC’s MATH 425b, taken real time in LATEX.

(c) Where – on Zoom classes, of course...

(d) When – spring 2020, in the midst of COVID-19.

(e) Why – to keep this as an memory of one of my favorite courses taken so far (up to freshman year).

(2) I did not proofread every sentence. Typos and mistakes may most likely appear. I will fix every issue I spot,

but there’s no guarantee I’ve found all of them.

(3) It was my intention to not use hyperref too much. Occasionally, you will see hyperlinks contained in red

boxes. Before clicking on it, make sure you remember your current page number because there is no hyperlink

to direct you back. (Or you could use keyboard shortcuts to jump back; on Mac’s Preview this can be easily

done by +[.)

(4) Notations. See below. Red ones are those that are more likely to cause confusion (and different notations

were used in lectures).

K
field a vector space is on;

assumed to be R or C
≡

identical to, e.g.,

cos(x − π/2) ≡ sin(x)

Fb(X,Y )
set of bounded functions

from X → Y
Cb(X,Y )

set of continuous & bounded

functions X → Y

{xn}n⩾1,{xn} sequence (x1, x2, . . . ) S ∶= {sn}n⩾1 enumeration of set

e(i)
(0, . . . ,0,1,0, . . . ) with

e
(i)
j ∶= eij , Kronecker delta

Ω open subset of C

L(X,Y )
space of linear operators

X → Y
B(X,Y )

space of bounded operators

X → Y

F −1({z})

often-times used as

“pre-image of {z}”, see

e.g. §5.4 (implicit

function theorem)

B(x, r)
ball centered at x with radius

r

1



Contents

3 Functions of a Real Variable 1

3.2 Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.3 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.4 Detour: Holomorphic Functions, Complex Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Function Spaces 15

4.1 Uniform Convergence and C0[a, b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Compactness and Equicontinuity in C0[a, b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Uniform Approximation in C0[a, b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Contractions and ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Multivariable Calculus 52

5.1 Linear Algebra; Operator Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Differential Multivariable Calculus; Total Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Implicit and Inverse Function Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 A more abstract View on Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Chapter 3

Functions of a Real Variable

Beginning of Jan. 15, 2021

Remark. Why 425ab?

(1) Calculus done rigorously, with definitions and proofs, originally on vague foundations, but later supple-

mented with solid foundations:

(I) 1800s: ϵ − δ language,

(II) late 1900s / early 1900s: set theory, metric spaces, etc.

(2) Intro to a large field of modern math, “analysis as a research field”. We will be learning theorems

— phased in abstract and modern language, often proved in the 20th century — that go beyond what

Newton & Leibniz knew. For example:

(1) 425a: point-set topology of metric spaces

(2) 425b: Arzelà-Ascoli theorem; Stone-Weierstraß theorem; Picard’s theorem on existence and

uniqueness for ODEs; implicit and inverse function theorems; exploration of Fourier series; and

differential forms.

(3) Closely related to complex analysis; useful perspective in power series and so on.

3.2 Integration Techniques

Integration by Substitution

Theorem 3.2.1: Integration by Substitution

If f ∈ R[a, b] (i.e., R.I. on [a, b]; f ∶ [a, b] → R or f ∶ [a, b] → C) and g ∶ [c, d] → [a, b] is a C1diffeomorphism

(i.e., g is a C1 function with an inverse also C1) with g′(0) > 0 (so g(c) = a and g(d) = b), then

∫
b

a
f(y) dy = ∫

d

c
f(g(x))g′(x) dx.

1
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Proof. The LHS is well-defined by assumption. For the RHS, f(g(x)), a function composed with a C1 diffeomor-

phism is R.I. Since g′(x) is continuous, the entire integrand of RHS is R.I.

Easier proof if f is continuous: let F (y) ∶= ∫
b

a
f(t) dt. By FTC, since f is continuous, F is differentiable on [a, b]

with F ′ = f . By chain rule, F ○ g is differentiable with (F ○ g)′ = (F ′ ○ g)g′, i.e.,

(F ○ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x).

Therefore ∫
b

a
f(y) dy = F (b) − F (a)

=0

= F (g(d)) − F (g(c)) = ∫
d

c
(F ○ g)′(x) dx = ∫

d

c
f(g(x))g′(x) dx.

Beginning of Jan. 20, 2021

Now we deal with the case where f ∈ R[a, b] where f is not necessarily continuous. We let (Pm, Tm)m⩾1 be

a sequence of partition pairs on [a, b] such that lim
n→∞

mesh(Pm) → 0. For each m we suppose the acquired

subintervals are with endpoints a = xm
1 < xm

2 < ⋅ ⋅ ⋅ < xm
n = b.

Now we apply the MVT to the differentiable function g on each subinterval (from the partition) such that, in

each subinterval there exists some tmk ∈ [xm
k−1, x

m
k ] with

g(xm
k ) − g(xm

k−1) = g′(tmk )(xm
k − xm

k−1).

Now let Tm ∶= {tmk }nk=1. Then (Pm, Tm) is a partition pair of [c, d]. Applying g to (Pm, Tm) we get

(g(Pm, g(Tm)), a partition pair of [a, b]. We then have

R(f, g(Pm), g(Tm)) =
n

∑
k=1

f(g(tmk ))[g(xm
k ) − g(xm

k−1)]

=
n

∑
k=1

f(g(tmk ))g′(tmk )(xm
k − xm

k−1)

= R((f ○ g)g′, Pm, Tm)

→ ∫
d

c
f(g(x)g′(x) dx as mesh(Pm)→ 0.

Now it remains to notice that lim
m→∞

mesh(g(Pm)) = 0: since g ∈ C1 by assumption, g is continuous, and thus it

is bounded on [c, d] and there exists C with ∣g′(t)∣ ⩽ C for all t ∈ [c, d]. By MVT there exists some s ∈ [c, d] such

that

∣g(xm
k ) − g(xm

k−1)∣ = ∣g′(s)∣∣xm
k − xm

k−1∣ ⩽ C ∣xm
k − xm

k−1∣.

Hence ∫
b

a
f(y) dy = lim

m→∞
R(f, g(Pm), g(Tm)) = lim

m→∞
R((f ○ g)g′, Pm, Tm) = ∫

d

c
f(g(x))g′(x) dx.

Integration by Parts

Theorem 3.2.2: Integration by Parts

Let f, g ∶ [a, b] → R be differentiable with f ′, g′ ∈ C0 (in fact, ∈ R suffices and the proof is exactly the same).

Then

∫
b

a
f(x)g′(x) dx = f(b)g(b) − f(a)g(a) − ∫

b

a
f ′(x)g(x) dx.

2
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Proof. By Leibniz product rule, since f, g are differentiable,

(fg)′ = f ′g + fg′.

Integrating both sides from a to b gives

∫
b

a
(fg)′(x) dx = ∫

b

a
f ′(x)g(x) dx + ∫

b

a
f(x)g′(x) dx

whereas the LHS by FTC II is the same as f(b)g(b) − f(a)g(a). Hence the claim follows.

Improper Riemann Integrals

Notice that there’s absolute vs. conditional convergence for these integrals.

Definition 3.2.3

Let f ∶ [a,∞)→ R (or C) be a function.

(1) If ∫
b

a
∣f(x)∣ dx exists for all b ⩾ a and lim

b→∞∫
b

a
∣f(x)∣ dx exists, then we say that the improper Rie-

mann integral ∫
∞

a
∣f(x)∣ dx converges, i.e., ∫

∞

a
f(x) dx converges absolutely, i.e., f is absolutely

Riemann integrable on [a,∞).

(2) If ∫
b

a
f(x) dx exists for all b ⩾ a and lim

b→∞∫
b

a
f(x) dx exists, then we say ∫

∞

a
f(x) dx converges, i.e.,

f is Riemann integrable on [a,∞).

A theorem to be proven in HW2: absolute convergence implies convergence for improper Riemann integrals.

There exists a powerful theory of integration (Lebesgue integration, 525a):

Lebesgue integrable ⇐⇒ absolutely Lebesgue integrable.

Absolutely convergent improper Riemann integrals are “proper” Lebesgue integrals, but conditionally convergent

improper Riemann integrals may not make sense in Lebesgue theory.

Back to 425a: if f(0) is undefined then we can treat ∫
b

0
as lim

a↓0 ∫
b

a
. Likewise, ∫

∞

−∞
can be split into sum of two

improper integrals.
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3.3 Series

Series (infinite sums) are an important context for ch.4 (uniform convergence), especially when we look at functions

defined as series. Sometimes we cannot differentiate series term by term. For now (ch.3) we will be looking at series

of numbers.

Definition 3.3.1

Let {ak}∞k=1 be a sequence of real (or complex) numbers. The series
∞
∑
k=1

an converges if the sequence of

partial sums

{
n

∑
k=1

ak}
∞

n=1
(where k is a dummy variable)

converges. If so, and the limit is L ∈ R (or C), then we write
∞
∑
k=1

ak ∶= L.

Beginning of Jan. 22, 2021

Example 3.3.2. Let x ∈ R and consider
∞
∑
k=0

xk (a very simple case of power series, but with x fixed). This

is called the geometric series; it converges if ∣x∣ < 1 and diverges otherwise.

Proof. Indeed, if ∣x∣ < 1 then
n

∑
k=0

xk = 1 − xn+1

1 − x
. Thus the partial sum converges to 1/(1 − x) since

lim
n→∞

n

∑
k=0

xk = lim
n→∞

1 − xn+1

1 − x
= 1

1 − x
.

If ∣x∣ ⩾ 1 then lim
k→∞

xk ≠ 0. (We’ll show soon that this implies divergence of series.)

Theorem 3.3.3: Cauchy Convergence Criterion, CCC

Let {
n

∑
k=1

ak}
∞

n=1
be a seuqence of real (or complex) numbers. The CCC states that the sequence converges if

and only if it’s Cauchy, i.e.,

∀ ϵ > 0, there exists N ∈ N such that n1, n2 ⩾ N Ô⇒ ∣
n1

∑
k=1

ak −
n2

∑
k=1

ak∣ < ϵ. In other words, there exists N

such that whenever n ⩾m ⩾ N we have ∣
n

∑
k=m

ak∣ < ϵ.

Now recall the example above. Recall we stated that if
∞
∑
k=1

ak converges then lim
k→∞

ak = 0. With CCC now introduced,

this becomes obvious: given ϵ > 0, there exists N ∈ N such that for all m = n ⩾ N ,

∣
m

∑
k=n

ak∣ < ϵ Ô⇒ ∣an∣ < ϵ for all n ⩾ N.

4
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Definition 3.3.4

The series
∞
∑
k=1

ak converges absolutely if
∞
∑
k=1
∣ak ∣ converges.

Theorem 3.3.5

An absolutely convergent sequence converges.

Proof. It suffices to show that the partial sum, {
n

∑
k=1

ak}
∞

k=1
is Cauchy. Since the sequence converges absolutely,

for ϵ > 0 there exists N ∈ N such that if n ⩾m ⩾ N , we have

∣
n

∑
k=m
∣ak ∣∣ < ϵ.

On the other hand, by triangle inequality,

∣
n

∑
k=m

ak∣ ⩽
n

∑
k=m
∣ak ∣ = ∣

n

∑
k=m
∣ak ∣∣ < ϵ

and we are done by CCC.

Definition 3.3.6

The series
∞
∑
k=1

ak converges conditionally if it converges but doesn’t converge absolutely, i.e.,

∞
∑
k=1

ak converges but
∞
∑
k=1
∣ak ∣ diverges.

Series Tests

Theorem 3.3.7: Comparison Test

If ∣ak ∣ ⩽ bk for all k sufficiently large, then the convergence of bk implies the convergence of
∞
∑
k=1
∣ak ∣ and, in

particular, of
∞
∑
k=1

ak. We say that
∞
∑
k=1

bk dominates
∞
∑
k=1

ak.

Proof. Again, we can bound sums of ak by bk and apply CCC. Indeed, for ϵ > 0 there exists N ∈ N such that for

all n ⩾m ⩾ N we have

∣
n

∑
k=m

ak∣ ⩽
n

∑
k=m
∣ak ∣ ⩽

n

∑
k=m

bk < ϵ.

5
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Theorem 3.3.8: Integral Test

Suppose ∫
∞

0
f(x) dx is a given improper integral and

∞
∑
k=1

ak is a given series.

(1) (The function is the bigger one) Assume ∣ak ∣ ⩽ f(x) for all x ∈ (k − 1, k) for sufficiently large k. Then if

∫
∞

c
f(x) dx exists for some c (recall “sufficiently large”), then

∞
∑
k=1
∣ak ∣ converges.

(2) (The series is the bigger one) Now we assume ∣f(x)∣ ⩽ ak for all x ∈ (k, k + 1) for sufficiently large k.

Then if
∞
∑
k=1

ak converges, so does the integral, i.e., (taking contrapositive) if the integral diverges then

the series diverges.

Note that there is no assumption that f is decreasing. Also, we picked (k − 1, k) and (k, k + 1) respectively

just for cleaner notation. It’s only a matter of choice.

Proof.

(1) Note that for n,m sufficiently large,

∣
n

∑
k=m
∣ak ∣∣ ⩽

n

∑
k=m
∫

k

k−1
f(x) dx = ∫

n

m−1
f(x) dx.

Now we apply the net b↦ ∫
d

c
f(x) dx with ⪯∶=⩽. This converges as b→∞ by our assumption. Then given

ϵ > 0 there exists C such that if a, b ⩾ C then

∫
b

a
f(x) dx < ϵ.

Taking N = ⌈C⌉ (ceiling) gives that, if n ⩾m − 1 ⩾ N ⩾ C then

∫
n

m−1
f(x) dx < ϵ.

Therefore for n ⩾m ⩾ N + 1 we have

∣
n

∑
k=m
∣ak ∣∣ ⩽ ∫

n

m−1
f(x) dx < ϵ

and the claim follows from CCC.

Beginning of Jan. 25, 2021

(2) Now we assume that for all sufficiently large k’s, i.e., k ⩾ c, we have ∣f(x)∣ ⩽ ak for all x ∈ (k, k + 1). By

HW2.1, it suffices to show that the net

b↦ ∫
d

c
∣f(x)∣ dx

on the directed set ([c,∞),⩽) is Cauchy. Notice that, for d1, d2 sufficiently large,

∣∫
d1

c
∣f(x)∣ dx − ∫

d2

c
∣f(x)∣ dx∣ = ∣∫

d2

d1

∣f(x)∣ dx∣

= ∫
d2

d1

∣f(x)∣ dx ⩽ ∫
⌈d2⌉

⌊d1⌋
∣f(x)∣ dx ⩽

⌈d2⌉−1

∑
k=⌊d1⌋

ak

6
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and the claim follows from the convergence of the
∞
∑
i=1

ak.

Corollary 3.3.9

Let f ∶ [1,∞) → R be decreasing and f ∶ [1, b] → R is Riemann integrable for all b ∈ R, and
∞
∑
k=1

ak is a series.

Assume f and the series are both always positive. Furthermore, assume f(k) = ak for all integers k. Then

∞
∑
k=1

ak converges ⇐⇒ ∫
∞

1
f(x) dx converges.

Proof. This is a direct application of the integral test. Since f is decreasing and f(k) = ak, f(x) ⩽ ak for

all x ∈ (k, k + 1). We also know that ak ⩽ f(x) for all x ∈ (k − 1, k). Now apply the theorem.

Example 3.3.10. The “p-series” is defined as ζ(p) ∶=
∞
∑
k=1

1

kp
. We check convergence of ζ(p) for p > 0. Note

that we can apply the corollary above between ak = 1/kp and f(x) = 1/xp, a decreasing function that agrees

with the series at integer values. Therefore

∞
∑
k=1

1

kp
converges ⇐⇒ ∫

∞

1

1

xp
dx converges.

If p ≠ 1, the RHS evaluates to lim
b→∞∫

b

1

1

xp
dx = [ 1

1 − p
x1−p]

b

x=1
= 1

1 − p
lim
b→∞
(b1−p − 1). From this we see that if

p > 1, 1 − p is negative and so the limit is finite. Otherwise we have an infinite limit (so the integral does not

converge). For p = 1 we get the log function which also diverges. See HW2.3.

Definition 3.3.11

The exponential growth rate of a series
∞
∑
k=1

ak is defined as α ∶= lim sup
k→∞

k
√
∣ak ∣ (see HW2.2 for existence).

Remark. For existence: if k
√
∣ak ∣ is decreasing, then sup

k′⩾n

k′
√
∣ak′ ∣ = k

√
∣ak ∣ and so lim sup

k→∞

k
√
∣ak ∣ =

lim
k→∞

k
√
∣ak ∣, which exists by monotonicity.

Theorem 3.3.12: Root Test

Let α be the exponential growth rate of a series
∞
∑
k=1

ak. If α < 1 the series converges. If α > 1 it diverges. If

α = 1 the test is inconclusive.

7
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Proof. If α < 1 then we can “squeeze” a β such that α < β < 1. Then,

lim
k→∞

sup
k′⩾k

k′
√
∣ak′ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
decreasing in R

= α < β,

so there does exist some sufficiently large n such that sup
k′⩾n

k
√
∣ak′ ∣ < β (since things like this converge to

α < β). This means k′
√
∣ak′ ∣ < β for all k′ ⩾ n. Therefore ∣ak′ ∣ < βk′ , and we can apply comparison test

between
∞
∑
k=1

ak and
∞
∑
k=0

βk, where the second dominates the first and also converges.

If α > 1 the we can pick β with 1 < β < α. Then we have

lim
k→∞

sup
k′⩾k

k′
√
∣ak′ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
decreasing

= α > β.

In particular, the terms with underbrace (sup) never gets below β. This means for all k, there exists

infinitely many k′ ⩾ k such that k′
√
∣ak′ ∣ > β, i.e., ∣ak′ ∣ > βk′ . Since lim

k→∞
ak ≠0 we know that the series

diverges. It doesn’t even converge conditionally.

Beginning of Jan. 27, 2021

Remark. The root test is inconclusive if α = 1. Indeed, all p-series have exponential growth rate 1; some

converge but some don’t. 1/kp grow or decay polynomially in k, while rk grow / decay exponentially in k.

Indeed,
k
√
1/kp = (1/kp)1/k = exp(1

k
log ( 1

kp
)) = exp(1

k
(−p log(k)) ,

and computing the limit of the exponent of rightmost term gives

lim
k→∞

−p log(k)
k

= lim
x→∞

−p log(x)
x

(H)= lim
x→∞

1/x
1
= 0.

(Notice that we first replaced k by x since k takes discrete values while x is defined on entire R+, which L’Hop

requires.) Hence all p-series have exponential growth rate 1, and the claim follows.

Theorem 3.3.13: Ratio Test

Let {ak}k⩾1 be a sequence. Assume ak ≠ 0 for large enough k. Let

ρ ∶= lim sup
k→∞

∣ak+1
ak
∣ and λ ∶= lim inf

k→∞
∣ak+1
ak
∣.

Then if ρ < 1 the series converges and if λ > 1 the series diverges. Otherwise the ratio test is inconclusive.

Proof. If ρ < 1, we can again “squeeze” β between ρ and 1, i.e., ρ < β < 1. Then by the lim sup assumption,

for all large enough k, say all k ⩾ c, we have ∣ak+1/ak ∣ < β, so ∣ak ∣ < βk−c∣ac∣ and the claim follows from

the comparison test with the series with ratio β. The other case is analogous. Again notice that for all

p-series, ρ = 1 = λ.

8
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Remark. We will not be covering cases like ρ < 1 ⩽ λ or ρ ⩽ 1 < λ. They are still inconclusive.

Theorem 3.3.14: Alternating Series Test

Let {ak}k⩾1 be a decreasing sequence of real numbers with ak > 0 for all k. Then its alternating series

∞
∑
k=1
(−1)kak = a1 − a2 + a3 − . . . converges (to 0) ⇐⇒ lim

k→∞
ak = 0.

Proof. The Ô⇒ direction is obvious. We’ll now show ⇐Ô . Since lim
k→∞

ak = 0, it’s enough to show that

lim
n→∞

2n

∑
k=1
(−1)k−1ak converges. Indeed,

2n

∑ differs from
2n−1
∑ by a2n which can be sufficiently small. Now,

2n

∑
k=1
(−1)k−1ak =

n

∑
k=1
(a2k−1 − a2k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

.

Since (a2k−1 − a2k) is always positive, the RHS forms an increasing sequence in n. To show it’s convergent, it

suffices to show it’s bounded. Indeed, since a2k+1 ⩽ a2k+1 Ô⇒ −a2n+2 ⩾ −a2k+1,

n

∑
k=1
(a2k−1 − a2k) ⩽

n

∑
k=1
(a2k−1 − a2k+1) = a0 − a2 + a2 − a4 + ⋅ ⋅ ⋅ − a2n

°
>0

⩽ a0.

Figure 3.1: From Pugh, p.196

Finally, power series: series of functions of a variable x (terms of series depending on x). The general form is

∞
∑
k=0

ck(x − x0)k

where often times x0 = 0 so the expression becomes
∞
∑
k=0

ckx
k but generally x0 can be arbitrary.

Some important questions:

(1) Does it converge?

(2) Is this example a differentiable function of x where x converges? – Yes, and even more: also C∞ and also

holomorphic. See radius of convergence below.

Beginning of Jan. 29, 2021
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Theorem 3.3.15: Radius of Convergence

If
∞
∑
k=0

ck(x − x0)k is a power series (over R or C) then there exists an unique R ⩾ 0, called the radius of

convergence of the series, such that the series converges whenever ∣x − x0∣ < R and diverges whenever

∣x − x0∣ > R. Again, the theorem is inconclusive on boundary of the disk, i.e., when ∣x − x0∣ = R. (On R this

reduces to the so-called interval of convergence). Furthermore, R is given by

R ∶= 1

lim sup
k→∞

k
√
∣ck ∣

where the denominator is the e.g.r. of the series
∞
∑
k=0

ck(x − x0)k evaluated at x − x0 = 1. The e.g.r. is defined for

numerical series, i.e., with fixed x, not for series where x varies.

Proof. We use root test: for any x, we have

k
√
∣ck(x − x0)k ∣ = k

√
∣ck ∣∣x − x0∣k = ∣x − x0∣ k

√
∣ck ∣

and taking lim sup gives lim sup
k→∞

k
√
∣ck(x − x0)k ∣ = ∣x − x0∣ lim sup

k→∞

k
√
∣ck ∣ = ∣x − x0∣/R, and the claim follows.

For uniqueness: suppose R and R′ are both radii of convergence. If ∣x − x0∣ = (R + R′)/2 our series converges

and diverges at the same time, clearly a contradiction.

End of Ch.3 of Pugh

10
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3.4 Detour: Holomorphic Functions, Complex Logarithm

Appendix 5.c of Pugh says that if z = x + iy then f ∶ C→ C can be written as

f(z) = u(x, y) + iv(x, y) where u, v ∶ R2 → R.

Definition 3.4.1

f ∶ Ω → C is holomorphic (or complex differentiable) if, for all z0 ∈ Ω we have lim
z→z0

f(z) − f(z0)
z − z0

exists. If so,

we define the complex derivative of z0, written as f ′(z0), to be that ratio.

Some facts from MATH 475 (not inducing circular reasoning here):

(1) If f is holomorphic on Ω then f ∈ C∞, i.e., being first-order differentiable implies being infinitely differen-

tiable. This is in stark contrast with real-valued functions.

(2) (Principle of analytic continuation.) If f, g are two holomorphic functions on connected Ω and f, g agree on

any small open ball in Ω, then they agree everywhere. Even better: if f and g agree on any non-discrete subset

(i.e., with a limit point) of Ω, then they agree everywhere.

An application of this fact: if we have defined sin(x) for x ∈ R and we want to extend sin(x) to sin(z) for

complex z. Then there exists at most one way to do so.

(3) How do we know if f is holomorphic?

(a) f ∶ C → C is holomorphic if and only if f viewed as f ∶ R2 → R2 by f(x, y) = (u(x, y), v(x, y)), assuming

first-order partials exist and are continuous, satisfies the Cauchy-Riemann equations:

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

(b) Alternative perspective: one way to view the Cauchy-Riemann equations is to introduce operators

∂

∂z
∶= ∂

∂x
− i ∂

∂y
and

∂

∂z
∶= ∂

∂x
+ i ∂

∂y
.

Then,

∂f

∂z
∶= ∂f

∂x
+ i∂f

∂y

= ( ∂

∂x
+ i ∂

∂y
) (u + iv)

= (∂u
∂x
− ∂v

∂y
) + i(∂u

∂y
+ ∂v

∂x
) = 0

if and only if the Cauchy-Riemann equations hold for f ! If so, f ′(z) exists, and it’s equal to
∂f

∂z
.

(c) Physics heuristic: first pretend f (any complex function) depends on “two ‘independent’ complex vari-

ables z and z” (e.g., writing f(z) = ∣z∣2 as f(z) = zz). Then we can take ∂/∂z and ∂/∂z of such functions

as if z, z were independent variables, even though they are not. The reason that accounts for it is because

∂

∂z
(z) = ∂

∂z
(z) = 0.

11
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Then, f is holomorphic if and only if ∂f/∂z = 0 if and only if “f depends only on z, not z.”

For example, f(z) = z3 is holomorphic but f(z) = ∣z2∣ = zz is not holomorphic (because we can express it

in terms of z).

This is good for algebraically defined functions, but how about transcendental functions, e.g., log?

Now, a fact about radius of convergence:

Theorem: (from MATH 475)

Let Ω be an open subset of C and let f ∶ Ω→ C be holomorphic. Let z0 ∈ Ω. Then the Taylor series of f(z0)

∞
∑
k=0

f (k)(z0)
k!

(z − z0)k

has radius of convergence ⩾ inf
z∉Ω
∣z − z0∣, i.e., “distance to the boundary”, and it converges to f .

Beginning of Feb. 1, 2021

Logical dependencies for holomorphic functions (a sneak peak):

(1) Define holomorphic functions and prove theorems like Cauchy-Riemann.

(2) Define line integrals ∫
C
f(z)dz with C ∈ Ω and f ∶ Ω → C continuous. To define the line integral: write

dz = dx + idy, the sum of two differential 1-forms and write f = u + iv where u, v ∶ Ω→ R. Then

∫
C
fdz = ∫

C
(u + iv)(dx + idy) = ∫

C
udx − vdy + i∫

C
vdy + udx.

Same thing for dz = dx − idy. Note that we can express dx and dy in terms of dz and dz:

dx = 1

2
(dz + dz) and dy = 1

2i
(dz − dz).

Then arbitrary line integrals of a complex vector field on a curve R2 ≈ C can be written as ∫
C
Pdz+Qdz where

P,Q are complex functions.

(3) Prove (more general statements hold): if f is holomorphic on Ω and E ⊂ Ω, then ∫
∂E

f(z)dz = 0. This basically

follows from general theory of differential forms. The integral here is “basically like” the line integral on a closed

curve of a conservative vector field. Indeed,

d(f(z)dz) = (∂f
∂z

dz + ∂f

∂z
°
=0

dz) ∧ dz = ∂f

∂z
dz ∧ dz
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=0

= 0.

(4) *** With above, prove Cauchy integral formula: if f is holomorphic on Ω, then for z inside a circle C in Ω (or

more general curve),

f(z) = 1

2πi
∫
C

f(ζ)
ζ − z

dζ,

i.e., values of f inside the circle are determined by the values of f on the circle! Here ζ is simply a dummy

variable. The proof uses calculation of ∫
1

z
dz along the unit circle.

12
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(5) From here: expand 1/(ζ −z) as a power series in z and get the theorem that Taylor series converge to f in any

ball Br(z0) ⊂ Ω, i.e., f is holomorphic Ô⇒ f is complex analytic.

(6) Now use things from this class (425b): power series can be differentiated term by term in their disk of

convergence; radius of convergence remains the same, see HW3. Then analytics functions and holomorphic

functions are C∞.

Transcendental Functions, log(x) & ex in C

Just like log(x) ∶= ∫
x

1

1

t̃
dt̃ for real logarithm (HW2), we want to define log(z) ∶= ∫

z

1

1

z̃
dz̃ for complex z. Further-

more, we want to make this integral path-independent for obvious reasons. It turns out this integral is “kind of” not

path-independent so we can’t.

Recall that on R2,
∂P

∂y
= ∂Q

∂z
would make ⟨P,Q⟩ conservative, but only on simply connected domain. Our domain,

C ∖ {0} is not.

Basic topological fact: we can compute a “test integral” ∫
C

1

z
dz where C is the curve along the unit circle. Then

any two paths γ1, γ2 from (1,0) to z differ by some multiple of that test integral. In fact this integral = 2πi.

Standard approach to our problem: we “make a branch cut” E, for example the negative real axis, on the complex

plane. Then C ∖E is simply connected, and so we can define

log(z) ∶= ∫
z

1

1

z̃
dz̃ for z ∈ C ∖E.

Cleaner approach: have a “function” C ∖ {0}→ C defined by

z ↦ ∫
z

1

1

z̃
dz̃

but it’s “multiple-valued”: values at z differ by integer multiples of 2πi (recall the “test integral”).

Now we introduce an equivalence relation ∼ on C: z ∼ z′ if z − z′ = 2πik for some integer k. Then C gets “divided”

by horizontal lines with complex axis coordinates 2πik. Then C/ ∼ is simply a cylinder with 0 = 2πi = 4πi = . . . . Now

we have a well-defined function:

C ∖ {0}→ C/ ∼ defined by z ↦ log(z) ∶= {∫
z

1

1

z̃
dz̃ + 2πik} = [∫

z

1

1

z̃
dz̃] .

(log(z) represents an equivalence class here.) This is holomorphic, bijective, and furthermore it’s a group homomor-

phism from (C ∖ {0}, ⋅) to (C/ ∼,+), i.e., the quotient of (C,+) by the subgroup generated by the element 2πi ∈ C, in

the sense that

log(xy) = log(x) + log(y).

Furthermore, the inverse defines the exponential function C→ C/ ∼→ C ∖ {0} by:

z ↦ [z]↦ log−1([z]) =∶ exp(z).

This is also a group homomorphism so exp(xy) = exp(x)+ exp(y) and furthermore exp(x+ 2πik) = exp(x). (By this

way of defining log, we need to precompose z to [z] before using its inverse, exp.)

Beginning of Feb. 3, 2021

With log and exp defined, now we define exponentiation:

13
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Definition 3.4.2

Define ab ∶= exp(b log(a)). Assumption: we make branch cut and take a ∈ C ∖ (−∞,0) × {0} since exp is

2πi periodic but the values of log(a) is “only defined” up to Z multiples of 2πib.. Now let e ∶= exp(1) so

exp(z) = exp(z ⋅ 1) = exp(z ⋅ log(e)) =∶ ez.

Example 3.4.3. Let α ∈ C. If α ∈ Z⩾0 then (1 + z)α is a polynomial in z, namely
α

∑
k=0
(α
k
)zk, called the

binomial formula. If α ∉ Z⩾0 then

(1 + z)α = eα log(1+z)

which is defined on C excluding (−∞,−1] × {0} (so that 1 + z is the branch cut). From the sneak peak (5),

holomorphic functions are analytic, so (1 + z)α equals its Taylor series centered at the origin if ∣z∣ < 1 (recall

the MATH 475 Theorem on Jan. 29).

Remark. Last lecture we defined log with codomain C/ ∼ the quotient. How do we define log with

codomain C instead, bypassing the branch cut method? The answer is by defining the Riemann surface

of log(z) – take infinitely many copies of C∖branch cut and create an infinite “staircase” such that log from

this surface to C is single-valued.

Trig Functions

Recall how we “defined” trig functions using diagrams with a unit circle and a right triangle with hypotenuse 1 and

angle θ counterclockwise to the positive x-axis. How do we define trig functions analogously to log?

Given (x, y) on the unit circle, we say y = sin θ. Hence we should define θ as the arc length on the unit circle from

(1,0) to (x, y). (If y < 0 simply take the negative of arc length.) Since the unit circle is given by x2 + y2 = 1, we can

parametrize the circle by r(t) ∶= ⟨
√
1 − t2, t⟩ and so the arc length θ is

θ = ∫
y

0
∥r′(t)∥ dt = ∫

y

0
∥⟨ − t/

√
1 − t2,1⟩∥ dt = ∫

y

0

√
t2

1 − t2
+ 1 − t2
1 − t2

dt = ∫
y

0

1√
1 − t2

dt.

Can we use the above equation to define arcsin(y) ∶= ∫
y

0

1√
1 − t2

dt for −1 < y < 1 (with some modification when

y < 0)? The answer is yes, but with extra concepts – a Riemann surface for the integrand:

w2 + z2 = 1 ⊂ C2 with coordinates z,w

and the integral becomes 1/w dz.

Remark. If we used arc length of ellipses instead of circles, we get elliptic integrals with inverses elliptic

functions. The Riemann surface w2 + z2 = 1 gets replaced by elliptic curves, e.g., w2 = z3 + az + b.

14



Chapter 4

Function Spaces

4.1 Uniform Convergence and C0[a,b]

Our goals:

(1) Prove the very fact about differentiating power series, using uniform convergence.

(2) (A more modern perspective) intro to functional analysis.

A short history of why uniform convergence matters:

(1) (Cauchy, 1821) If fn ∶ R→ R are continuous functions and
∞
∑
n=1

fn converges to f , then f is continuous.

(2) (Abel, 1826) Objection to above: consider Fourier series of the discontinuous function f(x) = x/2 on (−π,π)
but extended 2π-periodically to R with f(2π) = 0. It was known that

f(x) = sinx − 1

2
sin(2x) + 1

3
sin(3x) − ⋅ ⋅ ⋅ =

∞
∑
n=1

(−1)n−1

n
sin(nx).

In ϵ − δ language one can show that for any x ∈ R, the series
∞
∑
n=1

(−1)n−1

n
sin(nx) converges to f(x). However,

each partial sum is continuous whereas the limit is discontinuous. We run into problems if we try to differ-

entiate the series term by term: the ∑ becomes cos(x) − cos(2x) + cos(3x) − . . . which diverges for most x,

whereas the other side is 1/2 plus a bunch of Dirac delta functions (1/2 nearly everywhere).

Beginning of Feb. 5, 2021

Definition 4.1.1

Let X be a set and (Y, d) a metric space. Let {fn}n⩾1 be functions from X to Y , and let f ∶X → Y be another

function.

(1) We say the sequence {fn} converges pointwise to f if for all x ∈ X, {fn(x)} converges to f(x) as a

sequence of elements of Y , and we write fn → x. To put formally:
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For all x ∈X and ϵ > 0, there exists N ∈ N such that for any n ⩾ N we have d(fn(x), f(x)) < ϵ.

(2) We say the sequence {fn} converges uniformly to f and write fn → x uniformly if

For all ϵ > 0, there exists N ∈ N such that, for all n ⩾ N , d(fn(x), f(x)) < ϵ for all x.

Remark. Pointwise limits are unique (since limits in metric spaces are unique and if f ≡ g then f = g).

Example 4.1.2: Pointwise but not uniform convergence. This is one of the most classic examples that

illustrates the difference between pointwise and uniform convergence. Let X = [0,1], Y = R, and fn(x) = xn. It

follows that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

limn→∞ fn(x) = 0 x < 1, and

limn→∞ fn(x) = 1 x = 1.

Now define f(x) ∶= the piecewise function f(x) = 0 for x ∈ [0,1) and f(x) ∶= if x = 1. Indeed, above shows

that fn → f(x). Notice that for ϵ < 1/2 no fn(x) is entirely contained in the so-called ϵ-tube of f (because fn

always attains values in (ϵ,1 − ϵ) but that lies outside the ϵ-tube of f when ϵ < 1/2).

Time to fix Cauchy’s 1821 “theorem”:

Theorem 4.1.3

Let (X,d) and (Y, d′) be two metric spaces. Let {fn}n⩾1 be a sequence of functions from X to Y that are

continuous at x0 ∈X and let f ∶X → Y be another function such that fn → f uniformly. Then f is continuous

at x0. In addition, since x0 is arbitrary, this shows f is globally continuous.

Proof. This proof uses the famous ϵ/3 trick. Let ϵ > 0 be given. By uniform convergence, there exists N ∈ N such

that for all n ⩾ N and all x ∈X, we have

d′(f(x), fn(x)) < ϵ/3. (1)
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Also, since fn is continuous at x0, there exists δ > 0 such that whenever d(x,x0) < δ, we have

d′(fn(x), fn(x0)) < ϵ/3. (2)

Therefore, if d(x,x0) < δ, applying (1) twice (on x and x0) and (2) once gives

d′(f(x), f(x0)) ⩽ d′(f(x), fn(x)) + d′(fn(x), fn(x0) + d′(fn(x0), f(x0))

⩽ ϵ

3
+ ϵ

3
+ ϵ

3
= ϵ,

and the claim follows.

The above theorem shows that our previous example of fn(x) = xx cannot converge uniformly to f(x) the piecewise

function (since it’s discontinuous).

Some questions that follow naturally:

(1) If (X,d) is a compact metric space and f ∶X → (Y, d′) is continuous function, then f is uniformly continuous,

i.e., for all ϵ > 0 there exists δ > 0 such that d′(f(x), f(x′)) < ϵ/2 whenever d(x,x′) < δ, where x,x′ ∈ X are

chosen without further restriction.

Proof. Let ϵ > 0. For each x0 ∈ X, f is continuous at x0. It follows that if d(x,x0) < δx0 then

d′(f(x), f(x0)) < ϵ/2. Consider the set of open balls of (different) radii δx0/2 centered at different x0,

{B(x0, δx0/2) ∶ x0 ∈X}.

Let S ∶= {B(x1, δx1/2), . . . ,B(xn, δxn)/2} be a finite subcover of the above cover (exists by compactness).

Now define
δ

2
∶= min{δx1 , . . . , δxn}

2
.

It follows that if x,x′ ∈ X then x ∈ B(xi, δxi/2) for some i. Furthermore, if d(x,x′) < δ/2, then for this

particular xi,

d(x′, xi) ⩽ d(x′, x) + d(x,xi) <
δxi

2
+ δ

2
⩽ δ

2
+ δ

2
= δ,

so

d′(f(x), f(x′)) ⩽ d′(f(x), f(xi)) + d′(f(xi), f(x′)) <
ϵ

2
+ ϵ

2
= ϵ,

and the claim follows.

(2) If {fn} are functions on a compact domain (X,d) and fn → f for some f , can we upgrade fn → f to fn → f

uniformly? No, consider our same old example where [0,1] is indeed compact. The compact domain upgrades

continuity to uniform continuity but not convergence to uniform convergence!

(3) If (X,d) is compact, {fn} and f are continuous, and fn → f , do we have uniform convergence? Still no. Let

fn be the functions on [0,1] connecting (0,0) and (1/2n,1), (1/2n,1) to (1/n,0), and (1/n,0) to (1,0). Then

fn → f ≡ 0 but not uniformly for obvious reasons (ϵ = 1/2) for example.

However, persistence does pay off.
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Theorem 4.1.4: Dini’s theorem, 1878

If (X,d) is compact, and {fn}, f are continuous from (X,d) to R with standard Euclidean metric, fn → f ,

and fn(x) ⩽ fn+1(x) or fn(x) ⩾ fn+1(x) for all x,n, then fn → x uniformly. (This combines (2) and (3) in the

remark above).

Beginning of Feb. 8, 2021

Today we’ll view uniform convergence from a more modern perspective: metric space of functions and functional

analysis. Though most examples of these require Lebesgue integration, there’s one special case that does not gets

Lebesgue involved: “uniform” metric for spaces of bounded functions.

Idea: let X be a set and let (Y, d) be a metric space. We want to build a metric space of functions from X → Y , and

we want the convergence in this space to capture uniform convergence of the functions.

Want: if f, g ∶X → Y are functions then d(f, g) is small if and only if when f and g are uniformly close:

d(f, g) ∶= sup
x∈X

dY (f(x), g(x)).

Important part of the metric space axioms: codomain of d is R, not R∪ {∞}, i.e., given any two points in the metric

space are at finite distance from each other.

Issue: The supremum can still attain infinity though.

Fix: build a metric space out of bounded functions only.

Remark. Let (X,d) be a metric space and let x0 ∈X. TFAE:

(1) There exists M ∈ R such that d(x,x0) ⩽M for all M .

(2) There exists M ∈ R and x1 ∈X such that for all x ∈X, d(x,x1) ⩽M .

(3) There exists M ∈ R such that for all x,x′ ∈X, d(x,x′) ⩽M .

(4) If (X,d) is a metric subspace of X̃, d̃) and x̃0 ∈ X̃:

(a) There exists M ∈ R such that d̃(x, x̃0) ⩽M for all x ∈X.

(b) There exists M ∈ R and x̃1 ∈ X̃ such that d̃(x, x̃1) ⩽M for all x ∈X.

Definition 4.1.5

(X,d) is bounded if any of the above conditions hold.

Definition 4.1.6

Let X be a set and let (Y, d) be a metric space. A function f ∶ X → Y is bounded if its image f(X) ⊂ Y is

bounded as a metric subspace of Y . Equivalently, f ∶X → R is bounded if and only if there exists M ∈ R such

that ∣f(x)∣ ⩽M for all x ∈X.

Having established the idea of boundedness, we now move to the supremum norm:
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Definition 4.1.7

If X is a set and (Y, d) is a metric space, let Fb(X,Y ) be the set of bounded functions (not necessarily

continuous; not to be confused with Cb(Ω,K)) from X to Y . X is just any set, and these functions do not have

to be necessarily continuous. Define a sup metric dsup (or ∥ ⋅ ∥∞) on Fb(X,Y ) by

dsup(f, g) ∶= sup
x∈X

d(f(x), g(x)), as long as it’s ∈ R.

Lemma 4.1.8

If f, g ∈ Fb(X,Y ), then sup
x∈X

d(f(x), g(x)) <∞.

Proof. Let x0 ∈ X and choose M,N such that d(f(x), f(x0)) ⩽ M for all x ∈ X and d(g(x), g(x0)) ⩽ N
for all x ∈X. Then by triangle inequality, for any x ∈X,

d(f(x), g(x)) ⩽ d(f(x), f(x0)) + d(f(x0), g(x0)) + d(g(x0), g(x))

⩽M + d(f(x0), g(x0)) +N

which is finite (recall the metric space axiom that says d(f(x0), g(x0)) <∞ for any given f(x0), g(x0).

Now, a bunch of theorems connecting the sup metric to uniform convergence:

Theorem 4.1.9

If {fn} ⊂ Fb(X,Y ) be a sequence of bounded functions, then fn → f uniformly if and only if fn → f with

respect to the sup metric.

Proof. The proof consists of a chain of “⇐⇒ ”’s:

(1) fn → f uniformly.

(2) For all ϵ > 0 there exists N ∈ N such that d(fn(x), f(x)) < ϵ/2 for all x ∈X whenever n ⩾ N .

(3) For all ϵ > 0 there exists N ∈ N such that sup
x∈X

d(fn(x), f(x)) ⩽ ϵ/2.

(4) For all ϵ > 0 there exists N ∈ N such that dsup(fn, f) < ϵ.

(5) fn → f with respect to the sup metric.

Does this capture uniform convergence of bounded functions? What if we know fn’s are bounded and fn → f

uniformly but don’t know if f is bounded?

Proposition 4.1.10

Let X be a set and (Y, d) a metric space. If {fn} are bounded functions from X → Y and fn → f uniformly

for some f ∈X → Y , then f is bounded.
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Proof. Let x0 ∈ X. Take ϵ = 1. By uniform convergence of fn there exists N ∈ N such that d(fn(x), f(x)) < 1 for

all x ∈X whenever n ⩾ N . Then

d(f(x), f(x0)) ⩽ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0)) ⩽M + 2

which shows f is bounded.

Corollary 4.1.11

If {fn} ⊂ Fb(X,Y ), then {fn} converges uniformly if and only if it converges in (Fb(X,Y ), dsup).

Definition 4.1.12

Let X be a set and (Y, d) a metric space. Let {fn}, a sequence of functions from X → Y , is uniformly Cauchy

if, for all ϵ > 0, there exists N ∈ N such that

d(fm(x), fn(x)) < ϵ for all x ∈X, whenever m,n ⩾ N.

Theorem 4.1.13

Let X be a set and (Y, d) a metric space. If (Y, d) is complete then any uniformly Cauchy sequence of

functions from X to Y is uniformly convergent.

Beginning of Feb. 10, 2021

Proof. “Uniform estimate derived by non-uniform means”: let {fn} be a uniformly Cauchy sequence of functions

X → Y . We first show fn → f pointwise for some f ∶ X → Y . Indeed, uniform Cauchy-ness implies pointwise

Cauchy-ness which, by completeness of Y , implies pointwise convergence, and we define {fn(x)}→ f(x) for all

x ∈X.

Now we show fn → f uniformly. Let ϵ > 0 be given. There exists N ∈ N such that d(fñ(x), fm̃(x)) < ϵ/2 for all

x ∈X as long as m̃, ñ ⩾ N . Then, for all x ∈X, for m,n sufficiently large,

d(fn(x), f(x)) ⩽ d(fn(x), fm(x)) + d(fm(x), f(x))

where the first term can be made < ϵ/2 by uniform Cauchy-ness and the second can also be made < ϵ/2 by

pointwise convergence. The claim then follows.

Corollary 4.1.14

If Y is a complete metric space and X is any set, then (Fb(X,Y ), dsup) is complete.

Brief proof: any Cauchy sequence in Fb(X,Y ) is uniformly Cauchy and thus uniformly convergent by above.

Then the limit is also bounded – guaranteed by pointwise convergence in (Fb(X,Y ), dsup).

One more thing:
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Assuming X and Y are both metric spaces, we can talk about continuous functions X → Y .

Definition 4.1.15

We define Cb(X,Y ) as the set of bounded continuous functions from X → Y . This is a subset of Fb(X,Y ),
and (Cb(X,Y ), dsup) is a metric subspace of (Fb(X,Y ), dsup).

Proposition 4.1.16

Cb(X,Y ) is a closed subset of Fb(X,Y ).

Proof. A sequence {fn} in Cb(X,Y ) that converges with respect to dsup converges to some f ∈ Fb(X,Y ).
Then fn → f uniformly. Since each fn is continuous, so is f . Hence the closure.

Corollary 4.1.17

If Y is a complete metric space and X is any metric space, (Cb(X,Y ), dsup) is a complete metric space. This

follows from the fact that closed subsets of complete metric spaces are complete as metric subspaces.

Normed Vector Spaces

So far, we’ve talked about uniform convergence for functions in a general metric space Y (no additions, no multi-

plications, no series, only sequences). For series, we look at functions into metric spaces which are also vector spaces.

A natural structure is the normed vector space (V, ∥ ⋅ ∥). Recall that a normed vector space over K (R or C given

our context) is a vector space equipped with a norm that is non-degeneracy, absolute homogeneity, and triangle

inequality. This gives rise to a metric on V by d(u, v) ∶= ∥u − v∥.

Example 4.1.18. Some examples of normed spaces:

(1) V = R or C and ∥v∥ ∶= ∣v∣. More generally, (V, ⟨⋅, ⋅⟩) gives a inner product space where ⟨⋅, ⋅⟩ satisfies

(I) positive definiteness: ⟨v, v⟩ ⩾ 0 and ⟨v, v⟩ = 0 ⇐⇒ v = 0,

(II) antilineaity w.r.t. the first (or second) argument: ⟨u + cv,w⟩ = ⟨u,w⟩ + c ⟨v,w⟩ (or ⟨u, v + cw⟩ =
⟨u, v⟩ + c ⟨u,w⟩) depending on which argument is antilinear, and

(III) conjugate symmetry: ⟨v,w⟩ = ⟨w, v⟩.

If this holds, we define ∥v∥ ∶=
√
⟨v, v⟩. Examples of inner product spaces include Rn with ⟨v,w⟩ = ∑ viwi

and Cn with ⟨v,w⟩ = ∑ viwi or ∑ viwi (antilinearity on different arguments).

Furthermore, ∥ ⋅ ∥ can be induced by an inner product if and only if it satisfies the parallelogram law

∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2).
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If so, the inner product is given by the polarization identity

4⟨x, y⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∥x + y∥2 − ∥x − y∥2 K = R

∥x + y∥2 − ∥x − y∥2 + i(∥x − iy∥2 − ∥x + iy∥2) K = C, antilinear in first arg

∥x + y2∥ − ∥x − y∥2 + i(∥x + iy∥2 − ∥x − iy∥2) K = C, antilinear in second arg

(2) V = Rn or Cn for p ∈ [1,∞) and define the p-norm

∥v∥p ∶= (
n

∑
k=1
∣vk ∣)

1/p

.

For p = ∞ define ∥v∥∞ ∶= max
k∈[1,n]

∣vk ∣. Among these normed spaces, only p = 2 gives rise to an inner

product. Among the ℓp spaces only ℓ2 is Hilbert.

Beginning of Feb. 12, 2021

Definition 4.1.19

Two norms ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are called equivalent or comparable if there exist constants c, c′ such that

c∥x∥1 ⩽ ∥x∥2 ⩽ c′∥x∥1 for all x ∈X,

i.e., (X, ∥ ⋅ ∥1) ≅ (X, ∥ ⋅ ∥2) (isomorphic). We say that equivalent norms define the same topology.

Remark. One thing not preserved by equivalence of norm is whether the norm is induced by an

inner product. In fact, all norms on a finite-dimensional space over K are equivalent. See

HW5/6. (Recall that among all p-norms on Kn, only p = 2 is induced by an inner product.)

Corollary 4.1.20

An immediate corollary arising from the remark above is that any finite-dimensional normed vector space is

complete in the metric induced by the norm. Indeed, such finite-dimensional space X is isomorphic to Kn.

Therefore, we can understand Cauchyness or convergent sequences w.r.t. any norm by reference to the usual

norm which gives a complete metric.

Definition 4.1.21

(X, ∥ ⋅ ∥) is a Banach space (or X is Banach) if it’s complete. A Hilbert space is an inner product space

that is Banach.

Remark. Infinite-dimensional Banach spaces may have various structures, but any separable, infinite-

dimensional Hilbert spaces are isometrically isomorphic, with H (over K) ≡ ℓ2(K).
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Proposition 4.1.22

X is Banach if and only if
∞
∑
k=1
∥xk∥ < ∞ Ô⇒ {

n

∑
k=1

xk}
n⩾1

converges in X, i.e., ∥
n

∑
k=1

xk − x∥ → 0 for some

x ∈X. This says that, in Banach spaces, “absolute convergence” implies ordinary convergence.

Proof of Ô⇒ . Since X is complete, it suffices to show that the partial sums
n

∑
k=1

xk is Cauchy. By the Cauchy-ness

of the absolute series, given ϵ > 0, there exists N ∈ N such that if m > n ⩾ N then

∥
m

∑
k=n

xk∥ ⩽
m

∑
k=n
∥xk∥ =

m

∑
k=1
∥xk∥ −

n

∑
k=1
∥xk∥ < ϵ.

For ⇐Ô , I will copy & paste part of my previous notes. Take some Cauchy sequence {yn} ⊂ X. We’ll find a

convergent subsequence {ynk
} → y. This, along with {yn}’s being Cauchy, suffices to show {yn}’s convergence [ϵ/2

proof].

Let n0 = 1 and for k ⩾ 1 let nk be such that nk > nk−1 and

∥yi − yk∥ ⩽ 2−k for all i, j ⩾ nk.

(This is possible because {yn} is assumed to be Cauchy.) Now define a sequence {xn} such that x1 = yn1 and

xi = yni − yni−1 . Then
∞
∑
i=1
∥xi∥ ⩽

∞
∑
i=0

2−i = 2 <∞,

and by assumption
∞
∑
i=1

xi converges. This finishes the proof since
∞
∑
i=1

xi = yni by construction.

Functions into a Normed Vector Space

Let X be a set and V a vector space. We define Fun(X,V ) ∶= the set of functions from X → V . One can check this

is a vector space with (f + g)(x) ∶= f(x) + g(x) and (λf)(x) ∶= λ(f(x)). Now assume V has a norm ∥ ⋅ ∥. It then

makes sense to talk about boundedness of functions.

Then Fb(X,V ) (the set of bounded functions) is well defined and is a vector subspace of Fun(X,V ). Sums and

scalar multiples of bounded functions are still bounded.

In addition, if X is a metric space (not just a set), then C0(X,V ) ⊂ Fb(X,V ) and it is also a vector subspace. Sums

and scalar multiples of bounded continuous functions are bounded and continuous.

Definition 4.1.23

The sup metric on Fb(X,V ) mentioned before now upgrades to the sup norm. Let X be a set and (V, ∥ ⋅ ∥)
a normed vector space. For f ∈ Fb(X,V ), we define the sup norm as

∥f∥sup ∶= sup
x∈X
∥f(x)∥.

One can easily verify that ∥ ⋅ ∥sup is a norm on Fb(X,V ) and dsup(f, g) = ∥f − g∥sup.

Furthermore, if X is also a metric space then (Cb(X,V ), ∥ ⋅ ∥sup) is also well-defined and normed.
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Beginning of Feb. 17, 2021

Corollary 4.1.24

If X is a set and (V, ∥ ⋅ ∥) is Banach, then (Fb(X,V ), ∥ ⋅ ∥sup) is also Banach.

Brief proof: by completeness, being Cauchy w.r.t. ∥ ⋅ ∥sup is equivalent to uniform convergence.

An example of ∥ ⋅ ∥sup where Fb(X,V ) is finite dimensional:

Let X be a finite set, e.g., {1, . . . , n}, and take V ∶= K. Then any function {1, . . . , n} → K carry the same data as

vectors in Rn (think of vectors in Rn or Cn). Define

∥f∥sup = max
1⩽i⩽n

∣f(i)∣, in this case equivalent to ∥v∥∞ = max
1⩽i⩽n

∣vi∣,

from which we see that ∥ ⋅ ∥sup is a generalization of the∞-norm.

Series of Functions

Now that we have a normed vector space (V, ∥ ⋅ ∥), we can talk about series, not just sequences, of fnctions X → V :

∞
∑
n=1

fn, where fn ∶X → V.

Definition 4.1.25

Let X be a set and (V, ∥ ⋅ ∥) a normed vector space. A series
∞
∑
n=1

fn of functions with fn ∶ X → V converges

uniformly / pointwise if the sequence of partial sums converges uniformly / pointwise.

Definition 4.1.26

Let X be a set and (V, ∥ ⋅ ∥) a normed vector space. The series
∞
∑
n=1

fn converges absolutely if it converges

“absolutely pointwise”, i.e., for all x ∈X, the series
∞
∑
n=1

fn(x) converges (as a series) in V .

We say the series converges “absolutely uniformly” if the series
∞
∑
n=1
∥fn∥, a function X

fn→ V
∥⋅∥
→ R, where ∥ ⋅ ∥ is a norm

on V , not ∥fn∥sup. This is a nice convergence in a Banach space:

Theorem 4.1.27

Let X be a set and (V, ∥ ⋅ ∥) a Banach space. Assume
∞
∑
n=1

fn converges “absolutely uniformly” as above. Then

it converges absolutely and uniformly.

Proof. Absolute (pointwise) convergence is automatic. To show uniform convergence, it suffices to show that

the partial sums of∑ fn are uniformly Cauchy given (V, ∥ ⋅ ∥) is Banach. Indeed, this holds because

∥
n

∑
k=m

fk(x)∥ ⩽
n

∑
m

∥fk(x)∥ < ϵ for m,n large,
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where the last < comes from uniform Cauchyness of {
n

∑
k=1
∥fk∥}

n⩾1
.

Remark. Observe that if V is Banach then (Fb(X,V ), ∥ ⋅∥sup) is also Banach. Absolute convergence implies

ordinary convergence for series in a Banach space. This gives the following theorem.

Theorem 4.1.28: Weierstraß M-test, “nice version”

Let X be a set and (V, ∥ ⋅ ∥) a normed vector space. Let {fn} ⊂ Fb(X,V ). Then if
∞
∑
n=1
∥fn∥sup converges (as a

sequence of real numbers),
∞
∑
n=1

fn converges as a series in (Fb(X,V ), ∥⋅∥sup), i.e.,
∞
∑
n=1

fn converges uniformly.

Theorem 4.1.29: Weierstraß M-test

Let X be a set and (V, ∥ ⋅ ∥) a Banach space. Let {fn} ⊂ Fb(X,V ) be a sequence of bounded sequences. If
∞
∑
n=1

Mn is a convergent series with ∥fn∥ ⩽Mn, then
∞
∑
n=1

fn converges absolutely and uniformly.

Proof. The convergence of
∞
∑
n=1

Mn implies convergence of
∞
∑
n=1
∥fn∥sup. Then by above this means

∞
∑
n=1

fn converges

absolutely uniformly, and finally since (V, ∥ ⋅ ∥) is Banach,
∞
∑
n=1

fn converges absolutely and uniformly.

Beginning of Feb. 19, 2021

In the next few days, we limit our conditions to domain [a, b] ⊂ R,Ω ⊂ C and codomain R or C.

Recall from HW4 p3 that if fn ∶ [a, b] → R are Riemann integrable functions with fn → f uniformly, then f is

Riemann integrable as well. Uniform convergence preserves limits of nets:

lim
P,T

R(f,P, T ) exists and equals lim
n→∞

lim
P,T

R(fn, P, T ) = lim
n→∞∫

b

a
fn(t̃) dt̃.

In other words,

∫
b

a
lim
n→∞

fn(t̃) dt̃ = lim
n→∞∫

b

a
fn(t̃) dt̃,

i.e., we can “exchange” limits and Riemann integrals given uniform convergence of fn. 525a will show that this is a

weaker condition than uniform convergence in Lebesgue integrals.

Remark. Abstractly, note R[a, b] ⊂ Fb([a, b],R) is a closed subset with respect to ∥ ⋅ ∥sup.

Proposition 4.1.30

Let fn ∶ [a, b]→ R (or C) be Riemann integrable functions such that fn → f uniformly. Let

Fn(x) ∶= ∫
x

a
fn(t̃) dt̃ and F (x) ∶= ∫

x

a
f(t̃) dt̃ for x ∈ [a, b].

Then Fn → F uniformly on [a, b].
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Proof. Let ϵ > 0 be given. We choose N ∈ N sufficiently large such that ∣fn(t) − f(t)∣ < ϵ/(b − a) for all t ∈ [a, b]
when n ⩾ N . If this is true,

∣Fn(x) − F (x)∣ = ∣∫
x

a
fn(t̃) − f(t̃) dt̃∣ ⩽ ∫

x

a
∣fn(t̃) − f(t̃)∣ dt̃ < ϵ.

Now we apply the partial sums of series:

Corollary 4.1.31

Let fn, f ∶ [a, b] → R (or C) be Riemann integrable functions. If
∞
∑
k=1

fk = f (more conventional way to say

partial sums converge uniformly to f) then

∞
∑
k=1
(∫

x

a
fk(t̃) dt̃) converges to ∫

x

a
f(t̃) dt̃ uniformly on [a, b].

This can be easily shown using the proposition above.

Remark. In complex plane we have line integrals, to which the above results apply, after parametrization.

If fn ∶ [a, b]→ R are differentiable and fn → f uniformly, is f necessarily differentiable?

The answer is no. Counterexample from HW5: fn(x) ∶=
√
x2 + 1/n and f ∶= ∣x∣ on [−1,1]. Each fn is differentiable

but f has a cusp and thus not differentiable. This is because the derivatives converges pointwise but not uniformly.

See theorem below .

In particular, Weierstraß in 1872 pointed out that it’s possible to have differentiable fn’s with fn → f uniformly but f

is nowhere differentiable.

Theorem 4.1.32

Let fn ∶ [a, b] → R (or C) be differentiable on [a, b], fn → f pointwise, and f ′n → g uniformly for some

g ∶ [a, b]→ R. Then f is differentiable on [a, b] and f ′ = g.

Proof. Let x ∈ [a, b]. We want to show lim
h→0

Q(h) ∶= lim
h→0

f(x + h) − f(x)
h

exists and Q = g .

We define a net on the directed set A ∶= [a − x, b − x] ∖ {0}, with ordering ⪯ as ⩾, distance from 0, and codomain

R (or C).

We know each fn is differentiable, so lim
h→0

Qn(h) ∶= lim
h→0

fn(x + h) − fn(x)
h

exists and equals f ′n(x).

Claim: the nets Qn converge uniformly (in h) to Q as n→∞.

If this claim holds, define Ln = f ′n(x) = lim
h→0

Qn(h) and L = g(x). Then f ′n → g uniformly so Ln → L. Also since

each fn is differentiable, for each n, the net Qn(h) converges to Ln. If it so happens that Qn → Q uniformly,

then by HW4 p3(b) we have Q ≡ L, i.e., f ′ = g .

Proof of claim. We know Qn(h) → Q(h) pointwise in h; indeed, fn(x + h) → f(x + h) and fn(x) → f(x), so the

quotient converges. It suffices to show Qn(h) are uniformly Cauchy (in h) as n→∞ since R (or C) is complete.
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Given ϵ > 0, choose N sufficiently large that if m,n ⩾ N then

∣f ′n(ξ) − f ′m(ξ)∣ < ϵ for all ξ ∈ [a, b].

(This is possible since the derivatives indeed converge uniformly, in particular uniformly Cauchy by assumption.)

If m,n ⩾ N then by MVT

∣Qn(h) −Q(h)∣ = ∣
(fn − fm)(x + h) − (fn − fm)(x)

h
∣

= ∣(fn − fm)
′(ξ)∣∣(x + h) − x∣
∣h∣

= ∣f ′n(ξ) − f ′m(ξ)∣ < ϵ,

and the main claim follows.

Remark. Notice that in the theorem we only stated that fn → f pointwise. Indeed, this upgrades to uniform

convergence since the derivatives converge at least somewhere pointwise (cf. HW5.1).

Beginning of Feb. 22, 2021

A nice generalization of the theorem above:

Theorem 4.1.33

Let Ω ⊂ C be open and let fn ∶ Ω → C be holomorphic functions. Assume fn → f pointwise (f ∶ Ω → C), and

f ′n → g uniformly for some g ∶ Ω → C (actually suffices to assume locally uniform convergence / uniform on

compact subsets on Ω, cf. HW5.3). Then f is holomorphic on Ω and f ′ = g.

Proof. Apply the real-variable proof to x ∈ Ω with 0 < ∣h∣ < r where B(x, r) ⊂ Ω.

As in previous proof, it suffices to prove that Qn(h) → Q(h) uniformly (then again apply the limits of net stuff)

where Qn(h) ∶=
fn(x + h) − fn(x)

h
and Q(h) ∶= f(x + h) − f(x)

h
.

The “crucial step” to prove the claim: given ϵ > 0, choose N ∈ N such that if m,n ⩾ N , the uniform Cauchy-ness

of f ′n gives

∣f ′m(ζ) − f ′n(ζ)∣ < ϵ for all ζ ∈ B(x, r).

(Compare this with the real-valued MVT.) Then if m,n ⩾ N , and 0 < ∣h∣ < r, we have

∣Qn(h) −Q(h)∣ = ∣
(fn − fm)(x + h) − (fn − fm)(x)

h
∣

⩽ sup∣f ′m(ζ) − f ′n(ζ)∣ ⩽ ϵ,

where the supremum takes the supremum of ∣⋅∣ on all ζ on the line segment between x and x + h. See Pugh’s

Theorem 5.11 later, multivaraible MVT.

Remark. Since R2 ≅ C, the derivative operator (Df)p for p ∈ Ω ⊂ R2 can be viewed as a linear transforma-

tion R2 → R2. (The transformation is multiplication by f ′(z) as a map C → C.) Its operator norm is ∣f ′(z)∣.
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Then the MV inequality gives

∣f(p + v) − f(p)∣ ⩽ sup (∥(Df)p∥) ∣v∣

where the supremum is again taken over all points on the segment between p and p + v.

Corollary 4.1.34

(1) If fn’s are differentiable on [a, b],
∞
∑
n=1

fn converges pointwise to f on [a, b], and
∞
∑
n=1

f ′n converges uni-

formly to g on [a, b], then f is differentiable on [a, b] with f ′ = g. In particular,

d

dx

∞
∑
n=1

fn(x) =
∞
∑
n=1

d

dx
fn(x),

summation and derivative operator commute.

(2) If fn’s are holomorphic on Ω,
∞
∑
n=1

fn converge pointwise to f on Ω, and
∞
∑
n=1

f ′n converge locally uniformly

to some g ∶ Ω→ C, then f s holomorphic on Ω and f ′ = g. Once again commutativity holds.

4.2 Power Series

Now we apply what’s previously shown to power series. First, a consequence of Weierstraß M -test:

Theorem 4.2.1

Let
∞
∑
n=0

cn(z − z0)n be a complex power series, and let (Hadamard’s formula)

R ∶= 1

lim sup
n→∞

n
√
∣cn∣

be the radius of convergence. Then the series converges uniformly on any compact subset K ⊂ B(z0,R).

Proof. The main idea is to bound the series by some convergent geometric series. Consider the continuous function

z ↦ d(z, z0) = ∣z − z0∣. It clearly attains a maximum r < R on a compact domain K.

Now define r̃ = r + ϵ (slightly bigger) such that K ⊂ B(z0, r̃).
Now pick β with r̃ < β < R (sounds familiar?) so 1/R = lim sup

k→∞

k
√
∣ck ∣ < 1/β. Therefore all late enough terms of

k
√
∣ck ∣ < 1/β, i.e., there exists k0 such that, for k ⩾ k0 we have

k
√
∣ck ∣ ⩽

1

β
Ô⇒ ∣ck ∣ ⩽

1

βk
.

Now, for all z ∈ B(z0, r̃), we have

∣ck(z − z0)k ∣ ⩽ ∣ck ∣∣z − z0∣k ⩽
rk

βk
.

Taking sup of all z ∈ B(z0, r̃) and applying the M -test with Mk ∶= rk/βk, we obtain uniform convergence for z in

B(z0, r̃), hence the compact convergence.
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How about derivatives of the terms ck(z − z0)k, namely kck(z − z0)k−1? HW3.2(f) says they have the same radius

of convergence. Therefore the series of series also converge locally uniformly on B(z0,R). It follows that we can

iterative take derivatives and always obtain the same result without ever shrinking the radius of convergence [!!]

See these results below.

Corollary 4.2.2

∞
∑
k=0

ck(z − z0)k is holomorphic on B(z0,R) as summation and derivative operator commute. For real version,

∞
∑
k=0

ck(x − x0)k is differentiable on (x0 −R,x0 +R) with the same formula.

Corollary 4.2.3

Real analytic functions are smooth (i.e., C∞): derivatives of all orders exist. Complex analytic functions are

holomorphic and in fact analytic ⇐⇒ holomorphic [!!]

Remark. (Real) smooth functions are not necessarily analytic. For example

f(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−1/x x > 0

0 x ⩽ 0

is smooth but not analytic at 0.

Beginning of Feb. 24, 2021

Besides differentiation, we can also integrate power series to get new power series. For example, the geometric

series
1

1 − x
=
∞
∑
k=0

xk for x ∈ C with ∣x∣ < 1

can be integrated term-by-term inside the unit disk. For ∣x∣ < 1,

∫
x

0

1

1 − t̃
dt̃ =

∞
∑
k=0
∫

x

0
t̃k dt̃ =

∞
∑
k=0

xk+1

k + 1

whereas the LHS is

∫
x

0

1

1 − t̃
dt̃ = − log(1 − x),

so the series converge to − log(1 − x) for ∣x∣ < 1, i.e.,

log(1 + x) =
∞
∑
k=0
(−1)k x

k+1

k + 1
.

Remark. We gave a “general machinery” to use power series for functions like ez, sin(z), cos(z), etc., so

the above log(1 + x) is not just a “lucky case”.

For example, if we believe these three are holomorphic (where ex is the inverse function to log(z) = ∫
z

1

1

t̃
dt̃ and

sin(x), cos(x) are defined to be inverse functions of sin−1(z) = ∫
z

0

1√
1 − t̃2

dt̃ and cos−1(z); see notes on Feburary

29



YQL - MATH 425b Notes 4.3 - Compactness and Equicontinuity in C0[a, b] Current file: 2-26.tex

3), then theorems from complex analysis say that these functions have convergent power series expansions (Taylor

series). For example Taylor series for log(z) at z = 1 has radius of convergence 1, so we can take the open ball

centered at 1 and get

log(k+1)(z) = (−1)kk! Ô⇒ log(z) =
∞
∑
k=0
(−1)k k!

(k + 1)!
(z − 1)k+1

Ô⇒ log(1 + z) =
∞
∑
k=0
(−1)k z

k+1

k + 1
.

More generally, we can apply this idea to ez, sin(z), cos(z) and use Taylor series at z = 0, which has radius of

convergence∞. Computing the derivatives just like above gives

ez =
∞
∑
k=0

zk

k!
sin(z) =

∞
∑
k=0
(−1)k z2k+1

(2k + 1)!
cos(z) =

∞
∑
k=0
(−1)k z2k

(2k)!

so instead of saying “ez” is defined to be that power series, we have shown why. Once we have these series,

eiθ =
∞
∑
k=0

(iθ)k

k!
=
∞
∑
k=0

(iθ)2k

(2k)!
+
∞
∑
k=0

(iθ)2k+1

(2k + 1)!
= cos(θ) + i sin(θ),

The famous Euler’s equation. Valid for all eiθ (in fact valid for all eiz, z ∈ C). Wow.

Remark. One last remark: another way to know that these series agree with ez, cos(z), sin(z) is by using

Picard’s theorem on existence and uniqueness for solutions to ODEs. We’ll get to this later.

4.3 Compactness and Equicontinuity in C0[a,b]

Previously we have shown just how useful uniform convergence is. Now we will focus on a more modern perspec-

tive.

Recall that Heine-Borel states that K ⊂ Rn if and only if E is closed and bounded. The Ô⇒ is true by definition,

but we’ve already shown that ⇐Ô is not in general: (N, dsup) was the example given previously.

What about function spaces of form (Cb(X,Y ), dsup) where Y is normed? Consider the closed unit ball

B ∶= {f ∈ Cb(X,Y ) ∶ ∥f∥sup ⩽ 1}.

In a finite-dimensional function space B is compact, whereas if Cb(X,Y ) is infinite-dimensional then B is not

compact. (In fact this is an iff statement: a normed space is finite-dimensional if and only if the closed unit ball is

compact.)

For example, let X ∶= [0,1], Y = R and consider our same old example fn(x) ∶= xn on [0,1]. If B is compact then

we should be able to extract a convergent subsequence of {fn} (w.r.t. ∥ ⋅ ∥sup), but we know this is impossible since

fn converges pointwise to a discontinuous f , and there is no way how such a function can be approximated by a

continuous function in ∥ ⋅ ∥sup.

Beginning of Feb. 26, 2021
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Definition 4.3.1

Let (X,d) and (Y, d′) be metric spaces. Let E be a set of functions X → Y . E is called (uniformly) equicon-

tinuous if, for ϵ > 0, there exists δ > 0 such that all functions f ∈ E are uniformly continuous in the same way,

i.e., for all x,x′ ∈X with d(x,x′) < d and for all f ∈ E we have d′(f(x), f(x′)) < ϵ.

Remark. It becomes immediate that

(1) this definition works just well for a sequence {fn} of functions, and

(2) if E ′ ⊂ E and E is equicontinuous, then so is E ′.

Example 4.3.2. An example: any finite set of uniformly continuous functions is automatically equicontin-

uous (see HW6; “picking the smallest δ” argument).

A non-example: let X ∶= [0,1], Y = R, and fn(x) ∶= xn on [0,1] (same example again).

Brief proof. For ϵ = 1/2, assume there exists δ > 0 satisfying the equicontinuity condition (assuming δ < 1).

We know that

lim
n→∞
(1 − δ)n = 0,

so there exists n such that (1 − δ)n < 1/2. Then ∣fn(1 − δ) − fn(1)∣ > 1/2, contradicting the assumption.

This example gave non-compactness of unit ball in (C0([0,1],R), ∥ ⋅ ∥sup) (and non-equicontinuity, of course).

We will soon show that equicontinuity will fix Heine-Borel theorem in function spaces (i.e., compact iff closed,

bounded, and equicontinuous).

For example, let X = {1, . . . , n} be equipped with the discrete metric. Then C0(X,R) is all functions from X to

R, which then has a natural bijection with Rn. It follows that any E ⊂ C0(X,R) is equicontinuous, and so by the

bijection E ⊂ (Rn, ∥ ⋅ ∥∞) is compact if and only if it’s closed and bounded, i.e., the non-generalized Heine-Borel.

Intuition. Functions in a non-equicontinuous set E become “unboundedly steep”. See formal definitions below.

Definition 4.3.3

Let X,Y be metric spaces.

(1) If f ∶X → Y , then L ∈ R is a Lipschitz constant for f if, for all x,x′ ∈X,

d′(f(x), f(x′)) ⩽ Ld(x,x′).

If this happens, f is said to be Lipschitz or Lipschitz continuous. Think of this as the “global steepness”.

This is stronger than uniform continuity: given ϵ simply let δ ∶= ϵ/L.

(2) If E is a set of functions X → Y , then L ∈ R is a uniform Lipschitz constant if it’s a Lipschitz constant

for all f ∈ E .

Some immediate result following the Lipschitz constant:
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Proposition 4.3.4

If a uniform Lipschitz constant exists for E , then E is equicontinuous. (Given ϵ > 0, simply take δ = ϵ/L.)

Corollary 4.3.5

If in addition E is a set of differentiable functions from [a, b] → R (allowing a, b = ∞), and there exists a

global bound M ∈ R for all derivatives of all f , then E is equicontinuous with uniform Lipschitz constant M .

The Arzelá-Ascoli Theorem

We’ll split the long proof into two parts, the Arzeá-Ascoli Propogation Theorem, and the main Arzelá-Ascoli

Theorem. Some definitions for the remainder of this lecture, and we’ll start Arzelá-Ascoli next lecture.

Definition 4.3.6

A metric space (X,d) is totally bounded if, for all δ > 0, there exists a finite covering of X by open balls of

radii δ.

Theorem 4.3.7

For a metric space (X,d), TFAE:

(1) (X,d) is compact (the open-cover definition),

(2) (X,d) is sequentially compact (every sequence admits a convergent subsequence), and

(3) (X,d) is totally bounded and complete. Note that (1) Ô⇒ (3) is trivial.

Definition 4.3.8

A subset A ⊂ (X,d) is dense in X if any of the following (equivalent) conditions holds:

(1) For all x ∈X and δ > 0, there exists a ∈ A with a ∈ B(x, δ).

(2) Each point of x is a limit of sequence in A.

(3) A =X.

Definition 4.3.9

A metric space (X,d) is separable if it has a countable dense subset.

Proposition 4.3.10

If X is a compact metric space then X is separable.
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Proof. Let δ = 1,1/2,1/3, . . . . The total boundedness of X implies that a finite subset An ⊂X such that

⋃
a∈An

B(a,1/n) covers X.

Letting n vary and taking the union of all such An’s, we obtain a countable subset A ⊂ X that is dense! Reason:

given ϵ > 0, there exists n large enough that 1/n < ϵ. Then each point in X can be approximated by something in

An with distance < ϵ, which finishes the proof.

Theorem 4.3.11: Arzeá-Ascoli Propogation Theorem

Let (X,d) be a compact metric space and let A be a countable dense subset of X. Let (Y, d′) be a complete

metric space. Let {fn} be an equicontinuous functions X → Y such that, for all a ∈ A, the sequence {fn(a)}
converges in Y . In other words, {fn} converge pointwise on this dense subset. Then there exists f ∶ X → Y

such that fn → f uniformly. Pointwise convergence to some function on A propagates to uniform convergence

on all of X to some (possibly the same) function.

Remark. The some function above refers to the fact that, if fn → f̃ pointwise on A for some f̃ , it does not

mean does not mean the same f is the one that fn converges uniformly to on all of X. We can manipulate

the f̃ and alter the value of f̃(x) for some x ∈X ∖A, obviously.

Proof of Propagation Theorem. Let ϵ > 0 be given. We choose δ > 0 such that, if x,x′ ∈ X and d(x,x′) < δ then

for all n we have d′(fn(x), fn(x′)) < ϵ/3 (by equicontinuity).

Let {a1, a2, . . .} be an enumeration of A. Given our δ, there exsts a subset J = {a1, . . . , aj} ⊂ A that is “δ-dense” in

X (capable of approximating any x ∈X with distance < δ; see HW7 p1). From now on we will only look at these

points. For 1 ⩽ i ⩽ j, the sequence {fn(ai)} is assumed to be convergent in Y and in particular Cauchy. Therefore,

there exists a Ni such that d′(fn(ai), fm(ai)) < ϵ/3 whenever m,n ⩾ Ni. Since J is finite, it is well-defined to let

N =max{N1, . . . ,NJ}.
Now for x ∈X, we choose m,n ⩾ N and ai ∈ J with d(x, ai) < δ (recall the δ-density). Then,

d′(fn(x), fm(x)) ⩽ d′(fn(x), fn(ai)) + d′(fn(ai) + fm(ai)) + d′(fm(ai), fm(x))

< ϵ

3
+ ϵ

3
+ ϵ

3
= ϵ.

Therefore {fn} is uniformly Cauchy and, since Y is complete, uniformly convergent.

Theorem 4.3.12: Arzelá-Ascoli Theorem, “Traditional Version”

Let X be a compact metric space and let {fn} be a sequence of functions X → R (or K in general). Assume

{fn} is equicontinuous is equicontinuous and pointwise bounded (for each x ∈ x, {∣fn(x)∣} is bounded, a

stronger result then uniform boundedness as presented in Pugh’s book), then

(1) {fn} is uniformly bounded, and
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(2) {fn} has a uniformly convergent subsequence, i.e., a subsequence that converges in ∥ ⋅ ∥sup.

A stronger version: E ⊂ (C0(X,K), ∥ ⋅ ∥sup) is precompact if and only if it is bounded and equicontinuus.

Proof of (1). Let A be a countable dense subset of X. The equicontinuity implies that for some δ > 0 and all n,

if d(x,x′) < δ then ∣fn(x) − fn(x′)∣ < ϵ = 1, say. By the δ-density lemma, there exists a finite subset J ⊂ A that is

δ-dense in X. Then for all x, there exists some ai ∈ J we have d(x, ai) < δ.

On the other hand, {fn} is pointwise bounded and so {∣fn(ai)∣} is bounded, say by M . Therefore {∣fn(x)∣} is

bounded by M + 1 <∞.

Beginning of March 3, 2021

Proof os (2). Since X is compact, we are able to subtract A = {a1, a2, . . .} a countable dense subset of it. Our

goal is to show that there exists a subsequence of {fn} that converges pointwise on all ai, which then by the

Propagation theorem implies fn → f uniformly for some f .

To start, consider fn(ai), a bounded sequence of real (or complex) numbers. Thus (by Bolzano-Weierstras̈)

it admits a convergent subsequence. Therefore there exists a subsequence {f1,i} that converges pointwise at

a1 ({f1,i}i⩾1 = {n1, n2, . . .} which form a subsequence of {n}n⩾1). Using this fact again, since {f1,n(a2)} is a

bounded sequence, there exists a convergent subsequence f2,i that converges pointwise at a2. Notice that {f2,i}
also converges at a1! To generalize this notion, we can define recursively and get fm,i to be a subsequence of

fm−1,i that converges pointwise at am (and thus a1, . . . , am−1 as well).

Recall Cantor’s diagonalization which we previously encountered when showing R is uncountable. Here we

apply the same idea. After enumerating fm,i, we can extract a diagonal sequence gn ∶= fn,n, a subsequece of all

fm,i’s (ignoring finitely many terms if necessary) which therefore converges pointwise at all ai ∈ A.

Now we use the Propagation theorem and claim gn → g for some g ∶X → R (or K) uniformly on all of X, not A,

and we have proven the claim.

Applications of Arzelá-Ascoli Theorem

Theorem 4.3.13: Generalized Heine-Borel Theorem

If X is compact, then E ⊂ (Cb(X,R), ∥ ⋅ ∥sup) is compact if and only if it is closed, bounded, and equicontin-

uous.

Proof. For ⇐Ô , if E is closed, bounded, and equicontinuous, then we want to show that an arbitrary sequence

{fn} ⊂ E has a convergent subsequence.

The assumption that E is a bounded subset implies there exists M such that {f}sup ⩽M for all f ∈ E . Therefore

E is uniformly bounded. Therefore {fn} is uniformly bounded. It is also equicontinuous since E is. By Arzeá-

Ascoli, {fn} has a uniformly convergent subsequence, whose limit f is also guaranteed to be continuous, i.e.,

fn → f in ∥ ⋅∥sup. Since {fn} ⊂ E and E is closed, we know f ∈ E . Therefore every sequence in E has a convergent

subseequence, thus E is compact using the definition of sequential compactness.

34



YQL - MATH 425b Notes 4.3 - Compactness and Equicontinuity in C0[a, b] Current file: 3-5.tex

For Ô⇒ , assume E is compact and thus totally bounded. This immediately implies E is bounded. E is compact

so E is closed. For equicontinuity, given ϵ > 0, the total boundedness implies that there exists finitely many

ϵ/3-balls covering E with centers f1, . . . , fn. Then if f ∈ E we know ∥f − fk∥sup < ϵ/3 for some k ∈ [1, n].
Since each f ∈ E is continuous on a compact domain, there exists a δk > 0 such that

d(x,x′) < δk Ô⇒ ∣fk(x) − fk(x′)∣ <
ϵ

3
.

Now let δ vary between 1 and n and take the minimum. Then if f ∈ E and x,x′ ∈ X with d(x,x′) < δ, we can

choose k ∈ [1, n] with ∥f − fk∥sup < ϵ/3, and

∣f(x) − f(x′)∣ ⩽ ∣f(x) − fk(x)∣ + ∣fk(x) − fk(x′)∣ + ∣fk(x′) − f(x′)∣

< ϵ

3
+ ϵ

3
+ ϵ

3
= ϵ

where the first and third comes from ∥f − fk∥sup < ϵ/3 and the middle one from equicontinuity.

More applications?

Theorem 4.3.14: Montel’s Theorem

If Ω ⊂ C is open and E is a set of holomorphic functions Ω → C that is locally uniformly bounded, then any

sequence in E has a subsequence that converges locally uniformly / uinformly on compact subsets and the limit

is holomorphic. This leads to the proof of Riemann Mapping Theorem.

Beginning of March 5, 2021

Now we show one more application of Arzelá-Ascoli, returning to the uniform convergence of derivativees. Some

propositions first.

Proposition 4.3.15

Let fn ∶ [a, b] → R be differentiable functions. Assume f ′n → g uniformly to some g and fn is bounded

somewhere, i.e., for some x0 ∈ [a, b], the sequence {fn(x0)} is bounded sequence of real numbers. Then

{fn} has a subsequence that converges uniformly to f with f ′ = g.

Proof is immediate since a bounded sequence of real numbers admits a convergent subsequence and this sub-

sequence converges pointwise somewhere with a uniformly convergent derivative, which from HW5 + some

previous theorem implies the existence and differentiability of f .

What if we weaken one of the hypotheses, now we require instead that {f ′n} are uniformly bounded rather than

uniformly convergent? (Left as exercise to show that this is indeed a weaker condition.)

Corollary 4.3.16

Suppose fn ∶ [a, b]→ K is differentiable for each n ⩾ 1, and there exists M such that ∣f ′n(x)∣ ⩽M for all n ⩾ 1
and x ∈ [a, b] (this replaces the uniform convergent derivatves). Also assume that fn is bounded somewhere,

say, by C (∣fn(x0)∣ ⩽ C for all n ⩾ 1). Then {fn} has a uniformly convergent subsequence (no claims on

differentiability is made).
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Proof. Notice that M is a uniform Lipschitz constant for {fn} and therefore {fn} is equicontinuous (with

δ ∶= δ/M in the proof). Also, if x ∈ [a, b], then ∣fn(x)∣ ⩽ ∣fn(x)− fn(x0)∣+ ∣fn(x0)∣ ⩽M ∣x−x0∣+C ⩽M(b− a)+C,

independent of n (even x). Therefore {fn} is uniformly (in particular pointwise) bounded. It remains to apply

Arzelá-Ascoli theorem, and the claim follows.

4.4 Uniform Approximation in C0[a,b]

Recall that the set of polynomials is the span of {1, x, x2, x3, . . .}, i.e., the set of finite linear combinations of

these elements. Having discussed the compactness of E ⊂ (C0(X,K)), the next question to consider is: is E ⊂
(C0(X,K)) dense, in particular for E ⊂ (C0[a, b],R)? We already know that any analytic functions can be uniformly

approximated by polynomials (Taylor series), but what about all continuous functions in general?

The answer is yes; any f ∈ C0[a, b] is the uniform limit of polynomials!

For another example, consider X the unit circle S1 ⊂ C. It is compact (with S1 = {e2πiθ ∶ θ ∈ R}). Let A be the span

of {en(θ) ∶= e2πinθ}. Note that e2πinθ = cos(2πnθ) + i sin(2πinθ). Because of this, A is called the set of trigonometric

polynomials. In fact, A is dense in C0(S1,C) (which can be bijectively mapped to the set of 2π-periodic continuous

functions from R to C ). This is by Stone-Weierstraß Theorem. In particular, for Lipschitz continuous functions f ∶ S1 →
C, such polynomials is simply its Fourier series, of which the partial sums are trigonometric polynomials.

One more remark: partial sums of Fourier series of f are closest trigonometric polynomials to f in ∥ ⋅ ∥2 (to be shown in

HW), but not necessarily in ∥ ⋅ ∥sup.

Theorem 4.4.1: Stone-Weierstraß Theorem(s)

Let X be compact, and let A ⊂ C0(X,R) satisfy the following 3 properties:

(1) A is a function algebra (sub-R algebra of C0(X,R)), i.e., A is closed under sums, R-scalar multiples,

and function multiples (if f, g ∈ A then fg ∈ A),

(2) A “vanishes nowhere”, i.e., if x ∈X then f(x) ≠ 0 for some f ∈ A, and

(3) A “separates points”, i.e., if x ≠ y then f(x) ≠ f(y) for some f ∈ A.

Then the real version of Stone-Weierstraß states that A is dense in (C0(X,R), ∥ ⋅ ∥sup).

Theorem 4.4.2

The complex version of Stone-Weierstraß is analogous, butA ⊂ C0(X,C) and (1) becomesA is a C-function

algebra: closed under sums, C-scalar multiples, function multiplication and complex conjugation, i.e., if f ∈ A
then f ∈ A where f(x) ∶= f(x).
Then A is dense in (C0(X,C), ∥ ⋅ ∥sup).

Beginning of March 8, 2021

Say we have f ∈ C0([0,1],R) and we want to uniformly approximate f by polynomials.

Probabilistic interpretation: f depends on “the probability x that an unfair coin lands heads on a single flip.” We

want to compute “f at the true probability value x” but we don’t know x. Like in real life, we can only do a finite
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number n of coin flips to guess x.

Strategy: do as said above; say we get heads k times. Then our guess is that x = k/n. Then evaluate f at f(k/n).
As long as we have enough flips (for large n), we are confident that the expected value should be sufficiently close

to the actual x.

(I) What is the expected outcome of this strategy, given the true probability of x? If we do n flips (each with

a probability x of getting heads), what is the probability of getting k heads? The answer is given by the

Bernstein basis polynomial

p(k ∣ n) = (n
k
)xk(1 − x)n−k.

(II) The expected value of f given this strategy:

n

∑
k=0

f(k/n)p(k ∣ n) =
n

∑
k=0

f(k/n)(n
k
)xk(1 − x)n−k.

This is called the Berstein polynomial. Notice that the Berinstein polynomial is a polynomial of x of degree

n, a much nicer condition than f , which we know nothing more beyond its continuity.

Intuition: take n = 1. If it lands on heads we guess the probability to be 1; if tails, we assume x = 0. Then the n = 1
Berstein polynomial of f is simply f(0)(1 − x) + f(1)(x) = f(0) + x(f(1) − f(0)). This clearly is a bad guess but

at least it’s a polynomial. We’ll soon show that as n gets larger, the guess becomes more accurate, and eventually

we can uniformly approximate f using a Bernstein polynomial.

Let rk(x) = (
n

k
)xk(1 − x)n−k. For example, if n = 1, r0(x) = 1 − x and r1(x) = x. For n = 2, we have

r0(x) = (1 − x)2, r1(x) = 2x(1 − x), and r2(x) = x2.

In general, for a given n, there are n+1 Berstein basis polynomials rk(x). Also notice that the set {1, x, x2, . . . , xn}
contains exactly n + 1 elements [basis!], and they serve as the standard basis for vector space of polynomials

of degree ⩽ n. In fact, these Berinstein basis polynomials also form a basis for same vector space.

(III) Next sub-goal: we will prove some properties of rk(x), which can be viewed as binomial distributions over

possible k values given x. Then we will use these properties to prove Weierstraß approximation.

(0) rk(x) ⩾ 0 for all n, k, and x ∈ [0,1]. Obvious.

(1) For any x,
n

∑
k=0

rk(x) = 1. After all, the sum of all probabilities of all possible outcomes should be 1, as the

rk(x)’s give a probability distribution of k. Indeed,

1 = (x + (1 − x))n =
n

∑
k=0
(n
k
)xk(1 − x)n−k =

n

∑
k=0

rk(x).

Beginning of March 10, 2021

Before moving to the next equation, some definitions from probability theory first.

(2) If, for k ∈ {0, . . . ,1} we have pk ⩾ 0 and
n

∑
k=0

pk = 1, we say (p0, p1, . . . , pn) forms a probability distribution

on the finite set {0,1, . . . , n}.
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(3) For c ∈ R and m ⩾ 0 and integer, the mth moment of the probability distribution (p0, p1, . . . , pn) is defined

to be
n

∑
k=0
(k − c)mpk.

(a) For example, if m = 0 and c = anything then the corresponding 0th moment is
n

∑
k=0

1 ⋅ pk = 1.

(b) If m = 1, c = 0, we get the expected value
n

∑
k=0

kpk of the distribution. This equals nx because

(x + y)n =
n

∑
k=0
(n
k
)xkyn−k

take
∂

∂x
of both sides Ô⇒ n(x + y)n−1 =

n

∑
k=1

k(n
k
)xk−1yn−k

multiply both sides by x Ô⇒ nx(x + y)n−1 =
n

∑
k=1

k(n
k
)xkyn−k.

Therefore, letting y = 1 − x gives

nx =
n

∑
k=1

k(n
k
)xk(1 − x)n−k =

n

∑
k=1

krk(x) =
n

∑
k=0

krk(x).

(c) For m ⩾ 2, given (p0, p1, . . . , pn) a probability distribution on {0,1, . . . , n}, the mth central moment

of the distribution is the (m,c) moment at c = the expected value E (i.e., the m = 1, c = 0 moment).

This gives rise to the 2nd central moment,
n

∑
k=0
(k −E)2rk(x), known as the variance. It follows that,

if pk = rk(x) for some x ∈ [0,1] (binomial distribution), then the variance is nx(1 − x). The square

root of variance is known as the standard deviation. Indeed, from above we have

n(x + y)n−1 =
n

∑
k=1

k(n
k
)xk−1yn−k

take
∂

∂x
of both sides Ô⇒ n(n − 1)(x + y)n−2 =

n

∑
k=2

k(k − 1)(n
k
)xk−2yn−k

multiply both sides by x2 Ô⇒ n(n − 1)x2(x + y)n−2 =
n

∑
k=2

k(k − 1)(n
k
)xkyn−k.

Then setting y = 1 − x gives

n(n − 1)x2 =
n

∑
k=2

k(k − 1)(n
k
)xk(1 − x)n−k =

n

∑
k=0

k(k − 1)rk(x).

Splitting the parenthesis gives

n(n − 1)x2 =
n

∑
k=0

k2rk(x) −
n

∑
k=0

krk(x) =
n

∑
k=0

k2rk(x) − nx.

Therefore,

k

∑
k=0
(k − nx)2rk(x) =

n

∑
k=0
(k2 − 2nxk + n2x2)rk(x)

=
n

∑
k=0

k2rk(x) − 2nx
n

∑
k=0

krk(x) + n2x2
n

∑
k=0

rk(x)

= [n(n − 1)2 + nx] − 2nx(nx) + n2x2(1)

= nx(1 − x).

(IV) Main proof of the theorem (Berinstein 1912-1913).
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Theorem 4.4.3

Let f ∈ (C0[0,1],R) (or replace R with C). The polynomial functions

pn(x) =
n

∑
k=0

f(k/n)(n
k
)xk(1 − x)n−k

converge uniformly to f on [0,1].

Proof. Let ϵ > 0 be given. Since f is continuous on the compact domain [0,1], it is uniformly continuous and

bounded. Therefore, uniform continuity says there exists some δ > 0 such that ∣f(x) − f(x′)∣ < ϵ/2 for all

x,x′ ∈ [0,1] with ∣x − x′∣ < δ, and boundedness says there exists there exists M such that ∣f(x)∣ ⩽ M for all

x ∈ [0,1].

Let N ⩾M/(ϵδ2) be a sufficiently large integer. Claim: if n ⩾ N then ∣pn(x) − f(x)∣ < ϵ for all x ∈ [0,1].

Notice that we can re-write f(x) as f(x)
n

∑
k=0

rk(x). Then we can distribute the sum.

∣pn(x) − f(x)∣ = ∣
n

∑
k=0

f(k/n)(n
k
)rk(x) −

n

∑
k=0

f(x)rk(x)∣

= ∣
n

∑
k=0
(f(k/n) − f(x))rk(x)∣

⩽
n

∑
k=0

∣x− k
n<δ∣

∣(f(k/n) − f(x))rk(x)∣ +
n

∑
k=0

∣x− k
n⩾δ∣

∣(f(k/n) − f(x))rk(x)∣ for convenience, denote as ∑
1

&∑
2

<∑
1

(ϵ/2)rk(x) +∑
2

2Mrk(x) ϵ/2 by unif. cont; 2M by boundedness

⩽ ϵ

2
+∑

2

2M ⋅ ∣k − nx∣
2

(nδ)2
since 1 ⩽ ( ∣k/n − x∣

δ
)
2

= ∣k − nx∣
2

(nδ)2

⩽ ϵ

2
+ 2M

(nδ)2∑2
∣k − nx∣2rk(x)

⩽ ϵ

2
+ 2M

nδ2
x(1 − x) since ∑

2

⩽
n

∑
k=0
∣k − nx∣2rk(x) = nx(1 − x)

⩽ ϵ

2
+ 2M

nδ2
⋅ 1
4
= ϵ

2
+ M

2nδ2
< ϵ

2
+ ϵ

2
= ϵ for sufficiently large n.

Remark. For Stone-Weierstraß theorem, we will apply the classical one (above) to f(x) = ∣x∣ on [−1,1] plus

some more lemmas. Then compactness will finish the remaining job. To be continued in the near future.

Beginning of March 15, 2021

Stone-Weierstraß Theorem (Stone, 1937)

Before proving the Stone-Weierstraß Theorem, we need some lemmas first.
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Lemma 4.4.4

If A ∈ C0(X,R) is a function algebra, then so is its closure A (i.e., closed).

Proof. A is closed under sums: if f, g ∈ A such that there exist {fn},{gn} ⊂ A with fn → f and gn → g uniformly,

then fn + gn → f + g uniformly. Similarly, A is closed under scalar multiples and function multiples. (Proofs are

not hard.)

Lemma 4.4.5

Approximation of continuous functions by polynomials no only work for f ∈ C0([0,1],R) but also for f ∈
C0([a, b],R). We’ll focus on f(x) = ∣x∣ on [−1,1] later, thanks to this lemma.

Proof. We simply need to linearly rescale the functions by Φ ∶ C0([a, b],R)→ C0([0,1],R) with

f(x)↦ f((x − a)/(b − a)) and f−1(y) =↦ f−1(a + y(b − a))

(where x ∈ [a, b] and y ∈ [0,1]). Notice that these operations are linear transformations of vector spaces (iso-

morphism, in particular). Thus they preserve ∥ ⋅ ∥sup.

Therefore, fn → f uniformly in C0([a, b],R) if and only if the corresponding Φ(fn) ∈ C0([0,1],R) converge

uniformly to Φ(f) ∈ C0([0,1],R).
Furthermore, these linear transformations preserve the subset of polynomial functions, i.e., polynomials in

C0([a, b],R) gets mapped to polynomials in C0([0,1],R) and vice versa. This proves the lemma.

Now two slightly more difficult lemmas.

Lemma 4.4.6

Let X be compact and let A ⊂ C0(X,R) be a function algebra (and A is also a function algebra). Then if

f ∈ A, ∣f ∣ ∈ A, i.e., A also has closure under absolute values.

Proof. Main idea: ∣f ∣ is a composition of f and the usual absolute function: X
fÐ→ R

∣ ⋅ ∣
Ð→ R. We will approximate

the second absolute value function by a polynomial (on some compact interval containing the image of f as

Weierstraß approximation works for compact domain). Ideally, we want to approximate ∣x∣ by a1x + a2x2 + ⋅ ⋅ ⋅ +
anx

n. Then,

(∣ ⋅ ∣ ○ f)(x) = a1f + a2f2 + ⋅ ⋅ ⋅ + anfn,

where each fk is obtained from function multiplication and are in A, and ∣f ∣ is a linear combination of elements

of A. Thus f ∈ A = A.

Formally: note that ∥f∥sup is finite since X is compact. Consider the absolute value function

[−∥f∥sup, ∥f∥sup]→ R defined by y ↦ ∣y∣.

This is continuous, and by the lemma involving “transformations” of Weierstrß approximation there exists a

polynomial p(y) such that ∣p(y) − ∣y∣∣ < ϵ/2 for all y in the domain. In parciular, ∣p(0) − ∣0∣∣ < ϵ/2, i.e., ∣p(0)∣ < ϵ/2.
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Therefore, there exists a polynomial q(y) such that q(0) = 0 (i.e., the constant term vanishes!!) and ∣q(y)− ∣y∣∣ < ϵ.
To see this, simply let q(y) ∶= p(y) − p(0). We know ∣p(0) − ∣0∣∣ < ϵ/2. Therefore for all y in the domain,

∣q(y) − ∣y∣∣ = ∣p(y) − p(0) − ∣y∣∣ ⩽ ∣p(y) − ∣y∣∣ + ∣p(0)∣ < ϵ

2
+ ϵ

2
= ϵ.

Now we expand q as q(y) = a1y + a2y2 + ⋅ ⋅ ⋅ + anyn, without constant term. Let g ∶X → R be defined by g = q ○ f .

Then

g = a1f + a2f2 + ⋅ ⋅ ⋅ + anfn ∈ A = A.

We want to show that g is a nice approximation of ∣f ∣, i.e., ∥g − ∣f ∣∥sup is small. Indeed,

∥g − ∣f ∣∥sup = sup
x∈X
∣q(f(x)) − ∣f(x)∣∣

= sup
y∈im(f)

∣q(y) − ∣y∣∣ ⩽ ϵ

since the image of f is a subset of [−∥f∥sup, ∥f∥sup]. Therefore ∣f ∣ can be approximated arbitrarily closely by

elements of A. Thus ∣f ∣ ∈ A = A.

Immediately following the above lemma, we have the following:

Lemma 4.4.7

Let X be compact and letA ⊂ C0(X,R) be a function algebra. If f, g ∈ A then max(f, g),min(f, g) (pointwise

maximum / minimum) are also in A.

Proof. Indeed,

max(a, b) = a + b
2
+ ∣a − b∣

2
and min(a, b) = a + b

2
− ∣a − b∣

2
.

We either get a or b when evaluating the max or min. Therefore if f, g ∈ A then so are max(f, g),min(f, g).

One more lemma to go! To be shown next lecture.

Lemma 4.4.8

Let X be compact. Assume A ⊂ C0(X,R) satisfies all hypotheses of the Stone-Weierstraß theorem (i.e., a

function algebra that vanishes nowhere and separates points), then we have a stronger result: if x1, x2 ∈ X
with x1 ≠ x2 and given c1, c2 ∈ R, then there exists f ∈ A with f(x1) = c1 and f(x2) = c2. In other words, we

can prescribe the values at 2 points ∈X and get f ∈ A which satisfies this prescription.

Beginning of March 17, 2021

Proof. Define Φ ∶ A → R2 defined by Φ(f) ∶= (f(x1), f(x2)). Clearly as A is infinite-dimensional, Φ cannot be

injective. We are, and will, instead show that Φ is surjective (which is what the lemma claims).
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Notice that Φ is a linear transformation of vector spaces:

Φ(f + λg) = ((f + λg)(x1), (f + λg)(x2))

= (f(x1) + λg(x1), f(x2) + λg(x2))

= Φ(f) + λΦ(g).

(Manion doesn’t like this f + λg notion! He prefers to show f + g and λg separately.) Therefore the image of

Φ is a vector subspace of R2, whose dimension can be 0,1, or 2. It remains to show that 0 and 1 both give

contradictions.

Suppose dim(im(Φ)) = 0, i.e., Φ(f) = (0,0) for all f ∈ A. This is clearly a contradiction as a function algebra is

assumed to vanish nowhere.

Now suppose dim(im(Φ)) = 1. Then im(Φ) can be any line through the origin in R2. Clearly it cannot be

the x- or y-axis as A is assumed to vanish nowhere. However, even for other lines, if (c1, c2) ∈ im(Φ) then

c1 = 0 ⇐⇒ c2 = 0, i.e., f(x1) = 0 ⇐⇒ f(x2) = 0.

Our goal now is to construct some f ∈ A with f(x1) = 0 ≠ f(x2). Since A separates points, there exists some

f ∈ A with f(x1) ≠ f(x2). It’s natural to think about g(x) ∶= f(x) − f(x1) but g may or may not still be in A.

The fix: let g(x) = f(x) [f(x) − f(x1)] = f(x)2 − f(x)f(x1). It becomes clear that g ∈ A by closure of function

addition, multiplication, and scalar multiplication. Indeed,

g(x1) = f(x1)2 − f(x1)2 = 0 and g(x2) = f(x2) [f(x2) − f(x1)] ≠ 0 by assumption.

Finally, proof of the Stone-Weierstraß Theorem.

Recall that A ⊂ C0(X,R) is a function algebra that vanish nowhere and separates points. Let F ∈ C0(X,R) and let

ϵ > 0 be given and fixed. We want to find G ∈ A such that ∥F −G∥sup < ϵ. If we could show this then F ∈ A = A and

we are done.

Idea: given a p ∈X, we first find Gp ∈ A. It doesn’t necessarily have to satisfy ∥F −G∥sup < ϵ, but we want to ensure

Gp(x) > F (x) − ϵ for all x, i.e., “half of our desired condition”. We also want Gp to be such that Gp(x) < F (x) + ϵ
for x in an open neighborhood of p. This is possible because, given p, q ∈X, there exists Hpq ∈ A such that

Hpq(x) > F (x) − ϵ for x ∈ an open neighborhood of q

and

Hpq(x) < F (x) + ϵ for x ∈ an open neighborhood of p.

Then we use the “q-neighborhoods” to cover X with open sets and extract a finite subcover, from which we can take

the maximum.

Then we take the finite cover of all such covers (recall X is compact, in particular covering compact). This gives

Gp1 , . . . ,Gpn . The claim then follows from taking G(x) ∶= min
1⩽i⩽n

{Gp1(x), . . . ,Gpn(x)}.

Proof of Stone-Weierstraß. For any p ≠ q in X, the prescription lemma above (the latest one) implies that

there exists a function Hpq ∈ A such that Hpq(p) = F (p) and Hpq(q) = F (q). Recall that A is a subset of the
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continuous functions. Therefore, since Hpq and F agree at p and q, there indeed exists a neighborhood of p in

which Hpq > F − ϵ and a (maybe another) neighborhood of q, Upq, in which Hpq < F + ϵ. (If q = p then this claim

is also automatically true, as any of the other Hpq ’s with distinct p, q already implies that there exists H ∈ A such

that H(p) = F (p).)
For a fixed p, the compactness of X admits a finite subcovering consisting of Up,qn ’s. Define

Gp(x) ∶= max
1⩽i⩽n

Hp,qi(x).

This is the Gp(x) we are looking for. On one hand, Gp(x) > F (x) − ϵ for all x ∈ X; on the other hand, the

continuity of Gp implies that, for any p ∈X, Gp < F + ϵ on some (open) neighborhood Vp of p. Letting p vary, we

obtain another open cover of X by {Vp ∶ p ∈ X} which admits a finite subcovering {Vp1 , . . . , Vpm}. Therefore we

can define

G(x) ∶= min
1⩽i⩽m

Gpi(x).

The min/max lemma gives G ∈ A. We know Gpi(x) > F (x)− ϵ for all x so G(x) > F (x)− ϵ for all x. On the other

hand, if x ∈X then x ∈ Vpi for some i, so indeed G(x) < F (x) + ϵ for all x ∈X. Therefore

F (x) − ϵ < G(x) < F (x) + ϵ for all x ∈X, i.e., ∥F −G∥sup < ϵ.

This proves the claim!

Remark. Complex version. If A is closed under complex conjugation, then if f ∈ A we have

Re(f) = f + f
2
∈ A and Im(f) = f − f

2i
∈ A.

Given F ∈ C0(X,C), we have Re(F ),Im(F ) ∈ C0(X,R). By the real version of Stone-Weierstraß we can

find sequences {Pn},{Qn} that converge uniformly to Re(F ) and Im(F ). It follows then that

∥F − (Pn + iQn)∥∞ ⩽ ∥Re(F ) − Pn∥∞ − ∥Im(F ) −Qn∥∞ → 0.

Beginning of March 19, 2021

Before moving to the next topic, we introduce another application of Stone-Weierstraß:

Theorem 4.4.9

Let D2 be the unit disk in R2. Let F ∶D2 → R2 be continuous (“vector field on D2”). Then, for all ϵ > 0, there

exists some “other vector field” G ∶D2 → R2 continuous such that

dsup(F,G) < ϵ w.r.t. Euclidean norm on R2.

and G vanishes at most finitely many points.

Proof. Let A ∶= the set of two-variable polynomials
n

∑
i,j=0

cijx
iyj = R[x, y], the polynomial ring of two variables

over R . We will view these polynomials as functions on D2 (not all of R2). If two such polynomials agree on

D2 then they agree on R2. Notice that D2 is compact and A ⊂ C0(D2,R) also satisfies all the hypotheses of
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Stone-Weierstraß.

If we write F (x, y) = (F1(x, y), F2(x, y)), then F1, F2 ∈ C0(D2,R). Therefore there exist P,Q ∈ A with

dsup(P,F1) < ϵ/
√
2 and dsup(Q,F2) < ϵ/

√
2. It follows that

dsup((P,Q), (F1, F2)) = sup
x∈D2

√
(P − F1)(x)2 + (Q − F2)(x)2 <

√
ϵ2/2 + ϵ2/2 = ϵ.

These polynomials vanish at most finitely many points.

An algebraic brief proof: R[x, y] is a “unique factorizatizion[sic] domain, UFD and thus Q has finitely many

irreducible factors. Consider the polynomials P + δ where δ is any small constant δ. If δ ≠ δ′ then P + δ,P + δ′

have no irreducible factors in common (if so, δ − δ′ would be an irreducible polynomial of degree > 0, contradiction).

Therefore there exists small δ such that P ′ ∶= P + δ and Q have no irreducible factors in common, and (P ′,Q) is still

uniformly close to F .

Let P ∶= P ′. Fact: Res(P,Q) ∈ R[x] (the resultant). It vanishes for some x if and only if for some y such that

P (x, y) = Q(x, y) = 0.

If Res(P,Q) = 0 then as a polynomial in R[x] then P,Q have a common polynomial factor of degree > 0, contradic-

tion.

If Res(P,Q) is a nonzero polynomial in x then it vanish at finitely many x (for all but finitely many x, there does not

exist y with P (x, y) = Q(x, y) = 0). For the rest of points x (finitely many), P (x,−) and Q(x,−) are polynomials in

y and so they have finitely many zeros. This proofs the claim.

4.5 Contractions and ODEs

As far as we are concerned, there are two kinds of differential equations, Partial (PDEs) and ordinary (ODEs). For

example, the wave equation
∂2f

∂f2
= ∂2f

∂x2
+ ∂2f

∂y2

is an equation for an unknown function f of variables x, y, t involving partial derivatives of f .

For ODEs, things look simpler, for example

f ′′(t) − 3f ′(t) + 2f(t) = g(t) with a given g.

Here we need to solve for f considering only one variable, t. There are all kinds of “tricks” and “recipes”, for

example

f ′′(t) − 3f ′(t) + 2f(t) = 0

can be viewed as

( ∂
2

∂t2
− 3 ∂

∂t
+ 2)(f) = 0 Ô⇒ ( ∂

∂t
− 1)( ∂

∂t
− 2) (f) = 0.

The trick (haven’t justified): the derivative operators commute so one of them must be 0. This gives solutions A1e
t

and A2e
2t. This gives the general solution

f(t) = A1e
t +A2e

2t.

In a linear algebra sense, this space of solutions is a vector space and it is 2-dimensional: a basis is given by {et, e2t}.
The next question arises: why does this trick find all solutions? We will show this soon.
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First task: reduce to first-order systems. For example, consider again f ′′ − 3f ′ + 2f = 0. Since f ∶ R → R we can

define u(t) ∶= f(t) and v(t) ∶= f ′(t). Therefore f solves an ODE if and only if u, v satisfy

u′ = v and v′ = 3v − 2u.

Now we have reduced the second-order ODE (involving f ′′) to a system of two first-order ODEs. This gives

⎡⎢⎢⎢⎢⎣

u′

v′

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0 1

−2 3

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

u

v

⎤⎥⎥⎥⎥⎦

for a vector-valued function [u(t), v(t)]
T
∶ R → R2. More generally, we have x = x(t) ∶ R → Rn where we can

consider the equations of form x′(t) = F (x(t)) where F is a function R→ R, i.e., a vector field on Rn.

Limitations:

(1) We could really have x′(t) = F (t, x(t)) where F is continuous on R ×Rn.

(2) F might be a defined on an open subset of Rn, not the entire Rn.

Definition 4.5.1

Let U ⊂ Rn be open. Let F ∶ U → R be continuous. A solution to the system of ODEs x′(t) ∶= F (x(t)) with an

“initial value” p at t0 ∈ (a, b) is a differentiable function x ∶ (a, b)→ Rn for some (a, b) such that

x′(t) = F (x(t)) for all t ∈ (a, b) and x(t0) = p.

Theorem 4.5.2: Picard-Lindelöf Theorem, “autonomous case”

Let U ⊂ Rn be open and let F ∶ U → Rn be locally Lipschitz. Then, given p ∈ U , there exists a solution

to x′(t) = F (x(t)) defined in some neighborhood (a, b) of t0 that satisfies x(t0) = p. (The solution is a

function (a, b) → U). Furthermore, any two solutions satisfying these properties (defined on (a, b), (a′, b′)
containing t0) must agree on some smaller interval (a′′, b′′) contained in both (a, b) and (a′, b′). This gives

local uniqueness of solutions. Cf. HW9; in fact they must agree on all of the intersection.

Beginning of March 22, 2021

The Picard-Lindelöf Theorem can be generalized into the following form (that can be applied to differential forms):

Theorem 4.5.3: Picard-Lindelöf Theorem, “time-dependent case”

(Picard-Lindelöf, ∼ 1880; Lipschitz 1876.) Let Ω ⊂ R×Rn be open (the first R represent time). Let F ∶ Ω→ Rn

a “time-varying vector field”. Let elements of Ω be of form (t, y) where t ∈ R (time) and y ∈ Rn (spatial

coordinates). Assume

(1) F is continuous on Ω, “jointly continuous in t and in y, and

(2) F is locally Lipschitz in y and locally uniformly in t, i.e., for all (t0, y0) ∈ Ω, there exists an open

neighborhood V of (t0, y0) ∈ Ω and L ⩾ 0 such that, whenever (t, y), (t, y′) ∈ V , the Lipschitz condition

holds. Must compare t with the same t!
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Then for all (t0, y0) ∈ Ω, there exists an open neighborhood (a, b) of t0 and a differentiable function γ ∶
(a, b)→ Rn such that

(1) For all t ∈ (a, b), the pair (t, γ(t)) ∈ Ω,

(2) γ′(t) = F (t, γ(t)) for all t ∈ (a, b), and

(3) γ(t0) = y0.

Local uniqueness holds as before.

Remark. Differential equations like f ′′(t) − 3′(t) + 2f(t) = 0 is an autonomous system (now and also after

reduction of order). On the other hand, something like f ′′(t) = 3f ′(t)+ 2f(t) = cos(t) is non-autonomous as

now the RHS is of form g(t). This corresponds to the more general time-varying case.

Contraction

Now we talk about fixed points of functions f ∶X →X.

Definition 4.5.4

Let X be a set and f ∶ X → X a function. We say x ∈ X is called a fixed point of f if f(x) = x. The orbit of

x under f is given by {x, f(x), f2(x), . . .}. Thus equivalently x is a fixed point of f if and only if its orbit is

just {x}.

Example 4.5.5: Brouwer Fixed-Point Theorem. Any continuous f ∶Dn →Dn has at ⩾ 1 fixed point.

We will be especially concerned with fixed points for contraction mappings:

Definition 4.5.6

If (X,d) is a metric and f ∶ X → X a function, we say f is a contraction (or contractive mapping) if

there exists k < 1 such that d(f(x), f(y)) ⩽ k(x, y) for all x, y ∈ X. If such k < 1 does not exist and

d(f(x), f(y)) < d(x, y) for all x, y, f is called a weak contraction.

Example 4.5.7. Let X ∶= [1,∞). f ∶ X → X defined by f(x) = x + 1/x is a weak contraction but not a

contraction. It does not admit a fixed point as f(x) > x for all x.

Theorem 4.5.8: Banach Contraction Mapping Theorem

Let (X,d) be a complete metric space and f ∶X →X a contraction. Then f has a unique fixed point.

Beginning of March 24, 2021
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Proof. Uniqueness is clear (though it should be mentioned only after the existence has been shown). Suppose

x, y are fixed points then f(x) = x and f(y) = y. Hence d(f(x), f(y)) = d(x, y), contradicting the contraction.

Define iteratively x1 = f(0) and xn = f(xn−1) so that xn = fn(x0). Let k < 1 be the “contraction constant” for

f (the Lipschitz constant). Claim: {xn} forms a Cauchy sequence with d(xn, xn+1) ⩽ knd(x0, x1). Indeed, by

(informal) induction

d(xn, xn+1) ⩽ kd(xn−1, xn) ⩽ ⋅ ⋅ ⋅ ⩽ knd(x0, x1).

The remainder of the proof is simply calculating the partial sums of this geometric series and picking the correct

δ accordingly (
∞
∑
i=n

kid(x0, x1) = knd(x0, x1)/(1 − k) and so we can bound any d(xn, xm) with m ⩾ n by this).

Relatively simple, thus omitted. Then, given the limit exists,

lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

f(xn) Ô⇒ lim
n→∞

xn =∶ x∞ = f(x∞).

Before the proof of Picard-Lindelöf, we need a few lemmas relating to the “integral equations”.

Definition 4.5.9

Let F ∶ [a, b]→ Rm be defined by F ∶= [F1 ⋯ Fm]
T

. We say F is Riemann integrable if each Fi is. If so,

∫
b

a
F (t̃) dt̃ ∶= [∫

b
a F1(t̃) dt̃ ⋯ ∫

b
a Fm(t̃) dt̃] .

Analogous to functions F ∶ [a, b]→ Cm.

Done rigorously, for a partition pair (P,T ) ∈ A (the directed set defined for nets), define

R(F,P,T ) ∶=
n

∑
i=1

F (ti)(xi − xi−1) = [R(F1, P, T ) ⋯ R(Fm, P, T )] .

Then, the assignment (P,T )↦ R(F,P,T ) is a net from (A,⪯) to Rm.

Lemma 4.5.10

(1) F is Riemann integrable if and only if the net defined as above converges. If so, the integral = the limit

of the net.

(2) Continuous functions F ∶ [a, b]→ Rm are Riemann integrable.

(3) If F ′(x) exists then f is Riemann integrable on [a, b] with ∫
b

a
F ′(x) = F (b) − F (a).

Lemma 4.5.11

Just like the MVT, we have a generalized version:

∥∫
b

a
F (t̃) dt̃ ∥ ⩽M(b − a) where M = sup

x∈[a,b]
∥F (x)∥.
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Proof. First notice that

∫
b

a
F (t̃) dt̃ = lim

(P,T )
R(F,P,T ).

Since the norm function ∥ ⋅ ∥ ∶ Rm → R is continuous, it sends convergent nets to convergent nets! Thus

∥∫
b

a
F (t̃) dt̃ ∥ = lim

(P,T )
∥R(F,P,T )∥.

For any (P,T ), we have

∥R(F,P,T )∥ ⩽
n

∑
i=1
∥F (ti)∥(xi − xi−1) ⩽M

n

∑
i=1
(xi − xi−1) =M(b − a).

Thus the limit also ⩽M(b − a).

Lemma 4.5.12

Let Ω ⊂ R ×Rm be open. Let F ∶ Ω→ Rm be continuous. Let γ ∶ (a, b)→ Rm be continuous such that

(t, γ(t)) ∈ Ω for all t ∈ (a, b).

Let t0 ∈ (a, b). The following are equivalent:

(1) γ is a solution to the differentiable equation, i.e., γ is differentiable on (a, b) and γ′(t) = F (t, γ(t)).

(2) No differenentiability assumed, γ solves the integral equation

γ(t) = γ(t0) + ∫
t

t0
F (s, γ(s)) ds.

Proof. Assuming (1), γ′ is continuous (since F is) and thus Riemann integrable. By the anti-derivative theorem

∫
t

t0
γ′(t̃) dt̃ = γ(t) − γ(t0).

Assuming (2), then γ and F are both continuous and so is F (s, γ(s)). Then by the FTC

∫
t

t0
F (s, r(s)) ds is differentiable with deriv. at t = F (t, γ(t)).

Thus,

γ(t) = γ(t0) + ∫
t

t0
F (s, γ(s)) ds is differentiable and γ′(t) = F (t, γ(t)).

We now begin the proof of the Picard-Lindeöf Theorem (autonomous case):

Proof of the Picard-Linidelöf Theorem. We could let t0 ∈ R but for convenience we assume t0 = 0. We want to

solve

γ′(t) = F (γ(t)) and γ(t0) = y0.

WLOG, assume F is Lipschitz on U (an open neighborhood of y0). Let L be the corresponding Lipschitz constant.

We need some data about F to choose an interval [−τ, τ] on which the solutions exist and are unique. We will

set up these data first then finish the proof next lecture.

Since U is open, there exists r > 0 such that the closed ball N ∶= B(y0, r) ⊂ U . Notice that N is closed and
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bounded in Rm. Therefore it is compact. Therefore F (N) is compact; in particular, for some M we have

∥F (x)∥ ⩽M for all x ∈ N .

Beginning of March 26, 2021

Now we prove the following claims:

(1) Local existence: for any τ <min(r/M,1/L), there exists γ ∶ (−τ, τ)→ N differentiable with γ′(t) = F (γ(t))
for all t ∈ (−τ, τ).

(2) Local uniqueness holds.

We first show local existence. Let C ∶= C0([−τ, τ],N). Since N is compact, (C,dsup) is complete. If we are able

to find a contraction mapping from C → C then we can find a fixed point by the Banach contraction mapping

theorem. We want to define Φ ∶ C → C to be a such that γ ∈ C is a fixed point of Φ if and only if γ solves

γ(t) = γ(0) + ∫
t

0
F (γ(s)) ds.

The method to define such Φ is called the Picard iteration: for γ ∈ C, simply define (compare to above)

(Φ(γ))(t) ∶= y0 + ∫
t

0
F (γ(s)) ds.

First notice that if γ ∈ C then Φ(γ) ∈ C, so Φ is a function from C → C: indeed, continuity (even differentiability)

is obvious, and

∥Φ(r)(t) − y0∥ =
XXXXXXXXXXX
∫

t

0
F (γ(s)) ds

XXXXXXXXXXX
⩽M ∣t − 0∣ =Mτ =M ⋅min(r/M,1/L) < r

where the inequality follows from Lemma 4.5.11. Therefore (Φ(r))(t) ∈ N for all t ∈ [−τ, τ].
Now we shall show that Φ is a contraction with constant τL < 1. Let γ, σ ∈ C. We have

d(Φ(γ),Φ(σ)) = sup
t∈[−τ,τ]

XXXXXXXXXXX
y0 + ∫

t

0
F (γ(s)) ds − y0 − ∫

t

0
F (σ(s)) ds

XXXXXXXXXXX

= sup
t∈[−τ,τ]

XXXXXXXXXXX
∫

t

0
F (γ(s)) − F (σ(s)) ds

XXXXXXXXXXX
⩽ ∣t − 0∣ sup

s∈[−τ,τ]
∥F (γ(s)) − F (σ(s))∥

⩽ τ ⋅L ⋅ sup
s∈[−τ,τ]

∥γ(s) − σ(s)∥ = τL ⋅ dsup(γ, σ).

The uniqueness of Φ’s fixed point implies that there exists only one γ ∈ C satisfying Φ(γ) = γ. To put more

formally, given γ ∶ (a, b) → U and σ ∶ (a′, b′) → U , two solutions satisfying the boundary conditions, we still have

the r,M,L chosen from the beginning the problem, and we can define τ accordingly and decrease it to ensure

[−τ, τ] ∈ (a, b) ∩ (a′, b′) if needed. Then uniqueness on [−τ, τ] follows.
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Remark. This result is local, but we can do better in a few ways:

(1) By HW9 p1, if γ ∶ (a, b)→ U and σ ∶ (a′, b′)→ U agree locally, they actually agree on all of (a, b)∩(a′, b′).

(2) “Global existence” (solutions γ(t) defined for all time t) may fail if F only satisfies a local Lipschitz

condition. However, we have the following proposition:

Proposition 4.5.13

Suppose K ⊂ U is compact. Let γ ∶ (a, b) → U be a solution to γ′ = F (γ) where F is (locally) Lipschitz such

that γ(t) ∈ K for t ∈ (b − δ, b) for some δ. Then there exists b′ > b and a solution γ̃ ∶ (a, b′) → U with γ̃ ≡ γ on

(a, b). An analogous statement can be made for a.

Corollary 4.5.14

If F ∶ Rm → Rm is globally Lipschitz then solutions to initial value problems (IVPs)

γ′ = F (γ) and γ(t0) = y0

exist for all time.

Finally, we talk about flows. Assume U = Rm and F has global Lipschitz constants. Then for all p ∈ Rm there exists

γ ∶ R→ Rm such that

γ(0) = p and γ′(t) = F (γ(t)) for all t.

Once we fix the initial condition, we can define a flow on Rm or a t-advance map:

Definition 4.5.15

For t ∈ R, define φt ∶ Rm → Rm by

φt(p) = γ(t) for the unique solution to the IVP.

Key facts of φt:

(1) It is continuous. If further assumptions holds, e.g., F is smooth, then φt is also smooth. Smame holds

for C∞. This is called the continuous / smooth dependence of solutions on initial conditions.

(2) φs+t(p) = φs(φt(p)), i.e., the map sending t to φt is a group homomorphism from (R, t) to the group

of homeomorphisms of Rm with function composition, i.e.,

(R,+)→ (Homeo(Rm), ○).

Beginning of March 29, 2021

Today we will briefly mention one more application before moving to chapter 5.
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Hamiltonian Formulation

Let H ∶ R2n → R be a smooth function. Write coordinates in Rn by (q1, . . . , qn, p1, . . . , pn) where the q’s are position

coordinates and p’s are momentum coordinates. (More generally this is called a symplectic manifold.) Here R2n is a

phase space: points in R2m is a “state of the system”. Observable quantities can be defined as functions from this

phase space to Rm, of which H ∶ R2n → Rn is one example. This should specify a physical system that evolves over

time. How?

From H, we define a Hamiltonian vector field XH ∶

XH(x) ∶=XH(q1, . . . , qn, p1, . . . , pn) ∶= [
∂H

∂p1
(x) ⋯ ∂H

∂pn
(x) −∂H

∂q1
(x) ⋯ − ∂H

∂qn
(x)]

T

.

(Think of this as a symplectic analogue of gradient we’ve seen.) Then we have a system of ODEs

γ′(t) =XH(γ(t)).

This defines a flow φH ∶ R→ Homeo(R2n).

Theorem 4.5.16

The mapping φH determines the state of a system over time in the following sense: if one starts in state

(q1, . . . , qn, p1, . . . , pn) at t0 = 0, then one goes to state [φH(t)](q1, . . . , qn, p1, . . . , pn) after t seconds.

Rest of chapter 4 which we will not cover:

4.6 real analytic functions.

4.7 continuous but nowhere differentiable functions. The Baire category theorem in fact implies that “most” func-

tions are pathological just like the Weierstraß function.

4.8 dsup for unbounded functionsl spaces of unbounded functions; generalization of the Arzelà-Ascoli Theorem.

We are “officially” done with chapter 4 in MATH 425b.

51



Chapter 5

Multivariable Calculus

Roadmap for the remainder of this semester:

The HWs will lead to “multilinear algebra” / tensor algebra and differential forms, but here we will primarily focus

on linear transformation vs. linear transformations in §5.1. In particular, we will focus on the operator norm.

Once done with §5.1, we will talk about total derivative and Jacobian, e.g., “chain rule done right” in §5.2.

We will briefly skip §5.3 and move to §5.4: inverse and implicit function theorems.

5.1 Linear Algebra; Operator Norms

Recall that, if V,W are vector spaces over K (R or C), the natural notion of a “structure-preserving” map V →W is

a linear transformation T ∶ V →W . (Think of the axioms.)

If V,W are normed, we could look at bounded functions. However, from linearity, it is immediately clear that if

T ∶ (V, ∥ ⋅ ∥V ) → (W, ∥ ⋅ ∥W ) is linear transformation then T (x) is not bounded as we can scale x to make T (x)
arbitrarily large.

However, we can fix this by introducing the “scaling factor” or simply focus on all x ∈ V with ∥x∥V = 1. This naturally

leads to the notion of operator norm.

Definition 5.1.1

Let V,W be normed spaces over K T ∶ V →W a linear transformation. We define the operator norm ∥T ∥op

by

∥T ∥op = sup
∥v∥=1

∥T (v)∥ = sup
v≠0

∥T (v)∥
∥v∥

= inf{L > 0 ∶ ∥T (v)∥ ⩽ L∥v∥ for all v ∈ V }.

(Easy exercise to check that these are equivalent. Hint: scaling.)

It becomes immediate that ∥T (v)∥ ⩽ ∥T ∥op∥v∥ for all v. Note that the inequality holds even if v = 0, in which case

0 ⩽ 0 is vacuously true.

Question. Which T ’s have ∥T ∥op <∞? We have the following proposition.
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Proposition 5.1.2

Let V,W be normed over K and let T ∶ V →W be linear. Ridiculously as it sounds, TFAE:

(1) ∥T ∥op <∞,

(2) T is Lipschitz on V ,

(3) T is uniformly continuous on V ,

(4) T is continuous on V ,

(5) T is continuous at 0 ∈ V .

Proof. (1)Ô⇒ (2): simply take ∥T ∥op as the Lipschitz constant:

∥T (v) − T (w)∥ = ∥T (v −w)∥ ⩽ ∥T ∥op∥v −w∥.

(2) Ô⇒ (3) Ô⇒ (4) Ô⇒ (5) is trivial. Now we show (5) Ô⇒ (1) and assume T is continuous at 0. Then, for

ϵ = 1, there exists δ > 0 such that if ∥v∥ < δ then ∥T (v)∥ < 1. Therefore ∥T ∥op < 2/δ since

sup
∥v∥=1

∥T (v)∥ = sup
∥v∥=δ/2

2∥T (v)∥
δ

< 2

δ
.

Definition 5.1.3

If T ∶ V →W satisfies any of above, it is called a bounded (or continuous) operator / linear transformation.

In terms of notation, I prefer to define L(V,W ) to be the space of linear operators V → W and B(V,W ) to

be that of bounded operators V →W (this is different from the notations used in lectures).

Beginning of March 31, 2021

Proposition 5.1.4

Operator norms under composition satisfy triangle inequality. To put formally, let V,W,Z be normed. Let

S ∈ L(V,W ) and T ∶∈ L(W,Z). Then

∥T ○ S∥op ⩽ ∥T ∥op∥S∥op.

Proof. By definition,

∥T ○ S∥op = sup
∥v∥≠0

∥T (S(v))∥
∥v∥

= sup
∥v∥≠0
S(v)≠0

∥T (S(v))∥
∥v∥

= sup
∥v∥≠0
S(v)≠0

∥T (S(v))∥
∥S(v)∥

⋅ ∥S(v)∥
∥v∥

and the claim follows since supremum of product ⩽ product of supremums and

∥T ○ S∥op ⩽ sup
∥v∥≠0
S(v)≠0

∥T (S(v))∥
∥S(v)∥

sup
∥v′∥≠0
S(v′)≠0

∥S(v)∥
∥v∥

= sup
S(v)≠0

∥T (S(v))∥
∥S(v)∥

∥S∥op ⩽ ∥T ∥op∥S∥op.
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Remark. If we let V = W = Z, then B(V,V ) is not just a vector space; it’s a ring (with composition

as multiplication). Since B(V,V ) is both a ring and a vector space over K, it is called an R-algebra (or

C-algebra, respectively). The norm is given by ∥ ⋅ ∥op.

Definition 5.1.5

An algebra A over K is a Banach algebra if it has a complete norm ∥ ⋅ ∥ such that

∥ab∥ ⩽ ∥a∥∥b∥ for all a, b ∈ A.

If V is Banach then B(V,V ) is a Banach algebra.

A special case of (B(V,W ), ∥ ⋅ ∥op): given V , B(V,K) consists of all bounded operators from V to K. They are called

linear functional on (or dual vectors for) V . Then B(V,K) is called the (continuous) dual space to V , written

V ∗.

For example, we can let V = Rn and define a linear functional on V by a linear map V → R via matrix multiplication

with a “row vector” (i.e., a 1 × n matrix). So, if V is the space of “column vectors”, its dual space consists of “row

vectors”. If V is finite-dimensional and if we dualize V twice, we get

V ∗∗ ≅ V if V is finite-dimensional (not an “only if” statement).

Otherwise, V ∗∗ might be bigger. If V ∗∗ ≅ V we say V is reflexive.

Now we look at operator norms for linear operators between finite-dimensional vector spaces.

Proposition 5.1.6

(From HW10) All norms on a finite-dimensional vector space are equivalent.

Corollary 5.1.7

A function f ∶ Rn → Rm is continuous in Euclidean norm if and only if f is continuous given any norms on

Rn,Rm.

Proposition 5.1.8

Any n-dimensional vector space is isometrically isomorphic to Rn by picking a basis. To put formally, if

dim(V ) = n and {v1, . . . , vn} is a basis, then

T (
n

∑
i=1

αivi) ∶= (
n

∑
i=1

α2
i )

1/2

defines an isometry V → Rn.

If Rn,Rm have usual Euclidean metrics, then any linear transformation T ∶ Rn → Rm is continuous. More generally,

any linear transformation between finite-dimensional vector spaces is continuous given any norms on the vector

spaces.
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Therefore, if dim(V ) = n and dim(W ) = m, after picking bases for V,W , we can relate V to Rn and W to Rm.

Then the transformation matrix, a n ×m real (or complex) matrix, can again be related to (mn)-tuples of real (or

complex) numbers in Rnm or Cnm.

Thus, we have many norms on B(Rn,Rm). This includes operator norm, various norms on Rnm, and more. And

they are all equivalent[!]

Corollary 5.1.9

Now we present a corollary about matrix-valued function: let U ⊂ Rk be open and let A ∶ U → Mm×n(K)
(space of m × n functions, which can be identified as B(Rn,Rm)) be a matrix-valued function. Then TFAE:

(1) each entry Ai,j(x) of A(x) is a continuous function of x ∈ U , and

(2) A is a continuous function U → (Mm×n(K), ∥ ⋅ ∥op), i.e., for all x0 ∈ U , given ϵ > 0, there exists δ > 0
such that ∥A(x) −A(x0)∥op < ϵ whenever ∥x − x0∥ < δ (in Euclidean norm, say, for convenience).

Before moving to §5.2, we provide some more intuition for ∥ ⋅ ∥op on Mm×n(R):

(1) If n = m and A ∈ Mn×n(R) is symmetric then the spectral theorem gives an orthonormal basis for Rn

consisting of eigenvectors for A. In this case, ∥A∥op is the max of ∣λ∣ of A.

(2) In the more general case, if A ∈ Mm×n(R) then it has a singular value decomposition (SVD) A = UΣV T

(where Um×m, Vn×n are orthogonal and Σ is diagonal consisting of the singular values σi’s of A with larger σ’s

closer to the top-left). In this case, ∥A∥op = σ1, the largest singular value.

5.2 Differential Multivariable Calculus; Total Derivatives

For Rn → Rm, at p = (p1, . . . , pn) ∈ Rn, the total derivative of F = (f1, . . . , fm) at p, should it exist, will be a linear

transformation Rn → Rm (or equivalently an n ×m matrix). It is usually the Jacobian matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1
(p) ⋯ ∂f1

∂xn
(p)

⋮ ⋱ ⋮
∂fm
∂x1
(p) ⋯ ∂fm

∂xn
(p)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Beginning of April 2, 2021

We will set stage by taking smooth manifolds as a black box.

In a nutshell, a smooth manifold is supposed to generalize curves, surfaces, and their analogue in higher dimensions:

curves in R2,R3,Rn are called 1-dimensional manifold, surfaces in R2,R3,Rn are called 2-dimensional manifold, and

higher-dimensional analogues exist.

Here, we mainly consider open subsets of Rn as n-dimensional manifolds. Within this context, these open subsets

cannot have boundaries and cannot have singular points. We want smooth manifolds.
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Definition 5.2.1

A smooth manifold is a topological space that is second-countable, Hausdorff, and equipped with “extra data”:

equivalence class of smooth structures.

Key construction: if M is a smooth manifold and p ∈M , then there exists an abstract vector space TpM , the tangent

space to M at p, an n-dimensional vector space if M is n-dimensional. In particular, if M ⊂ Rn, this can be identified

with the “usual” tangent space seen in Calculus III, for example the tangent plane of a surface in R3.

Some extra black box definitions:

(1) TpM is the set of equivalence class of smooth curves in m through p; equal to (m/m2)∗ (whatever that means).

With theory of smooth manifolds, one can look at functions

F ∶M → N (M,N being smooth manifolds).

“Differentiable” functions will be those F ∶ M Ô⇒ N that “can be linearly approximated subtlety” by a linear

transformation T ∶ TpM → TF (p)N . If such T exists and “approximates F appropriately”, we say that F is differen-

tiable with T being its total derivative (or simply Jacobian in this context), written (DF )p.

What is (DF )p good for? For example, the inverse function theorem. If F ∶M → N and G ∶ N →M are inverses to

each other, and if p ∈M with F (p) = q ∈ N , then

TpM

(DF )pÐ→←Ð
(DG)q

TqN

and chain rule gives (DF )p, (DG)q are inverse to each other. In addition, F is nonlinearly invertible near p: there

exists an open neighborhood U of p and V of q ∶= F (p) such that

F ∶ U → V is invertible, a diffeomorphism.

Now we focus on F ∶ U → V where U,V are open subsets of Rn and Rm, respectively (so they are smooth n-manifold

and smooth m-manifold, respectively).

Key fact: given p ∈ U , we have a canonical identification TpU ≅ Rn because U has a canonical choice of coordinates.

(Heuristically, think of R2; the tangent plane at each point in U ⊂ R2 (open) is just all of R2.) Likewise TqV ≅ Rm.

Then (DF )p should be a linear transformation Rn → Rm.

Definition 5.2.2

Let U ⊂ Rn be open and let f ∶ U → Rm be a function (or to V ⊂ Rm open). Let p ∈ U , and let T ∶ Rn → Rm

be a linear transformation. We say F is differentiable at p (heuristically, T approximates F at p) if

lim
v→0

v∈Rn∖{0}

F (p + v) − F (p) − T (v)
∥v∥

= 0.

Intuitively, F (p + v) is the real value of F at p + v and F (p) + T (v) is the “approximate value”.
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For convenience we denote the denominator above as R(v) the “error term for approximation”. This condition

shows that T is a good “first-order” approximation to F near p: it should encode data of first-order partials of F .

Beginning of April 5, 2021

Proposition 5.2.3

If such T exists, it is unique.

Proof. If T and S both satisfy the limit condition, then

lim
v→∞

S(v) − T (v)
∥v∥

= 0 = lim
v→∞

(S − T )(v)
∥V ∥

by directly subtracting one from another. Assume S − T is not the zero linear transformation, so there exists

v0 ≠ 0 such that (S − T )(v0) ≠ 0. On one hand, we should have lim
c→∞

cv0 = 0, whereas

lim
c→0+

(S − T )(cv0)
∥cv0∥

= (S − T )(v0)
∥v0∥

,

contradiction.

Thanks to this uniqueness, if F is differentiable at p then (DF )p is a well-defined linear transformation.

Example 5.2.4. Let m = n = 1. Any linear transformation T ∶ R1 → R1 is given by multiplication by a 1 × 1
matrix A = [a], i.e., T (v) = av for all v ∈ R.

If F ∶ U → R is a function (with U ⊂ R open) and p ∈ U , then (assuming v ≠ 0)

F (p + v) − F (p) − T (v)
∥v∥

= F (pv) − F (p) − av
∣v∣

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F (p + v) − F (p)
v

− a v > 0

a − F (p + v) − F (p)
v

v < 0.

Therefore, F is differentiable at p if and only if the above quotient → 0 as v → 0, i.e.,

lim
v→∞

F (p + v) − F (p)
v

= a.

If so, a is the derivative (DF )p. Obvious enough that we overkilled the single-variable version!

More generally, given n = 1,m ⩾ 1, any linear transformation T ∶ R→ Rm has an m × 1 matrix:

T (v) = [a1 ⋯ am]
T
v = [a1v ⋯ amv]

T
for v ∈ R.

Since functions from open subsets of R to Rm are often viewed as paths in Rm, we will use γ instead of F to help

strengthen the memory. If γ ∶ (a, b) → Rm is a function and t0 ∈ (a, b), then γ is differentiable at t0 with derivative

T (v) = [a1 ⋯ am]T v if and only if

lim
t→0

γ(t0 + t) − γ(t0) − [a1 ⋯ am]T t
∣t∣

= 0.

Similar to the R→ R case, if so we say

lim
t→∞

γ(t0 + t) − γ(t0)
t

= [a1 ⋯ am]
T
.
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Therefore each coordinate γi(t) is differentiable at t0 with derivative ai(t0).

Upshot: m > 1 “doesn’t cause troubles” except with MVT.

Proposition 5.2.5

Let U ⊂ Rn be open, let F ∶ U → Rm, and let p ∈ U . Write F in coordinates as

F (x) = (F1(x), . . . , Fn(x)) for x ∈ U

(so each Fi ∶ U → R). Then F is differentiable at p with matrix derivative T (v) = Am×nv if and only if each

Fi is differentiable at p with derivative Ti(v) = [ai,1 ⋯ ai,n]v.

Proof. Call the first statement (1) and the second (2). By definition, (1) is equivalent to saying

lim
v→0

F (p + v) − f(p) − T (v)
∥v∥

= 0,

a limit of vectors in Rm. Therefore the component-wise limit is the limit of the component, and hence (2).

Proposition 5.2.6

We have the following properties:

(1) Linearity: if F,G ∶ U → Rm with U ∈ Rn an open subset and F,G are differentiable at p ∈ U , then for

c ∈ R we have

(D(F + cG))p = (DF )p + c(DG)p.

(2) If F is a constant function U → Rm then F is differentiable at all p ∈ U with (DF )p = 0.

(3) If F is affine linear, F (v) = c +Av for v ∈ Rn, then F is differnetiable at any p with (DF )pv = Av.

Derivatives and Compositions

Theorem 5.2.7: Chain Rule

Suppose U ∈ Rn and V ∈ Rm are open, and suppose U
FÐ→ V

GÐ→ Rk. Assume F is differentiable at p with

(DF )p(v) = Am×nv and likewise G is differentiable at q ∶= F (p) with (DG)q(v) = Bk×mv. Then

G ○ F is differentiable at p and (D(G ○ F ))p(v) = (BA)k×n(v)

where BA represents matrix multiplication (which corresponds to composition of linear transformations).
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Figure from lecture: a little commutative diagram showing (compose) ○ (approx) = (approx) ○ (compose)

Before the chain rule, we first prove a seemingly obvious fact:

Proposition 5.2.8

Let U ∈ Rn be open and let F ∶ U → Rm. Let p ∈ U . If F is differentiable with derivative T at p then F is

continuous at p.

Proof. One say to show continuity is lim
v→0

F (p + v) = F (p) (sequential continuity). Notice that F (p + v) =
F (p) + T (v) +RF (v) where RF (v) is the “remainder” term defined to be RF (v) ∶= F (p + v) − F (p) − T (v) (the

numerator of the differentiability limit equation). Clearly as v → 0, RF (v) → 0 by the assumption that F is

differentiable at p. Note that as v → 0, T (v) → 0 (any linear transformation between finite-dimensional normed

spaces is continuous). For ∥v∥ ⩽ 1, we have

∥RF (v)∥ ⩽
∥RF (v)∥
∥v∥

so ∥RF (v)∥→ 0 as v → 0.

So lim
v→0

F (p + v) = F (p) + 0 + 0 = F (p).

Beginning of April 9, 2021

Proof of Chain Rule. Let RF be a function of v ∈ Rn (the sublinear error term by when approximating F , i.e.,

RF (v) = F (p + v) − F (p) − Av) for v, p ∈ U . Likewise, let RG be the error term when approximating G, i.e.,

RG(w) = G(q +w) −G(q) −Bw for w, q ∈ V .

Now we let RG○F be the error term of G ○ F by RG○F (v) ∶= G(F (p + v)) −G(F (p)) − BAv. We want to show

that lim
v→0

RG○F (v)/∥v∥ = 0 (which then by definition means the derivative of differentiability means G ○ F is
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differentiable at p. In the formula for RG○F (v) we plug on the approximations for F (p + v):

RG○F (v) = G(F (p)
²

q

+Av +RF (v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w

) −G(q) −BAv

= G(q) +B(Av +RF (v)) +RG(Av +RF (v)) −G(q) −BAv

= BRF (v) +RG(Av +RF (v)).

Then, by triangle inequality,

∥RG○F (v)∥
∥v∥

⩽ ∥BFF (v)∥
∥v∥

+ ∥RG(Av +RF (v))∥
∥v∥

.

The first term → 0 because it is further bounded by ∥B∥op
∥RF (v)∥
∥v∥

where the operator norm of B is finite and

the quotient → 0 as v → 0 by differentiability of R.

We now show that the second term also→ 0. We can multiply both the numerator and detonator by ∥Av+RF (v)∥.
(If Av +RF (v) = 0 then the numerator is simply RG(0) = G(q) −G(q) = B ⋅ 0 = 0 and the fraction still evaluates

to 0, and now we assume Av +RF (v) ≠ 0 so that multiplication on both sides makes sense.) Then

(∥RG
Av +RF (v)∥

∥v∥
= ∥RG(Av +RF (v))
∥Av +RF (v)∥

⋅ ∥Av +RF (v)∥
∥v∥

.

Note that, as v → 0, Av → 0 since multiplication by A is continuous. Also, RF (v) = F (p + v) − F (p) − Av

is differentiable (and thus continuous) and also → 0. Therefore, as Av + RF (v) → 0, the first term → 0 by

sublinearity of RG. Now it suffices to show that
∥Av +RF (v)∥

∥v∥
is bounded as v → 0. Indeed,

∥Av +RF (v)∥
∥v∥

⩽ ∥Av∥
∥v∥

+ ∥RF (v)∥
∥v∥

⩽ ∥A∥op +
∥RF (v)∥
∥v∥

where the second fraction → 0 as v → 0, once again by the sublinearity of RF . This concludes the proof.

Recall that one way to define TPM (tangent space; M smooth manifold, p ∈ M) is by defining it as the set of

equivalence classes of paths in M through p (these paths can be expressed as functions γ ∶ (−ϵ, ϵ)→M with γ(0) = p
for all these paths). Equivalence relation is given by γ1 ∼ γ2 if γ′1(0) = γ′2(0) “in some chart” (derivative because this

is the tangent space).

Important question to ask: how does (DF )p act on vectors v = γ′(0) for γ ∶ (−ϵ, ϵ) → U where r(0) = p, p ∈ U , and

U ∈ Rn open?

Proposition 5.2.9

Let t0 ∈ (a, b) and let γ ∶ (a, b) → U be a differentiable function (curve) with γ(t0) = p (p ∈ U and U ⊂ Rn

open). Let F ∶ U → Rm be differentiable at p. Then

(DF )p(γ′(t0)) = (F ○ γ)′(t0).
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Proof is clear by chain rule:

(D(F ○ γ))t0 = (DF )γ(t0)(Dγ)t0 .

Remark. If we are trying to define (DF )p as a map TpM → TqN for a map of smooth manifolds F ∶M → N ,

and suppose TPM is the equivalence classes of curves γ in M through p and TqN likewise, then how should

(DF )p act on some element of TpM?

(1) Pick one representative in the equivalence class (some γ ∶ (a, b)→M).

(2) Compose γ with F ∶ F ○ γ ∶ (a, b)→ N .

(3) Take equivalence classes of these new functions (this is independent of choice of representative in (1)).

Corollary 5.2.10

If U ⊂ Rn is open, p ∈ U , and F ∶ U → Rm is differentiable at p, then

(DF )p(v) = lim
t→0

F (p + tv) − F (p)
t

.

Proof. Proof: simply let γ(t) ∶= p + tv for t ∈ (−ϵ, ϵ) for sufficiently small ϵ ensuring γ ∶ (ϵ, ϵ) → U . Then

γ(0) = pandγ′(0) = v. Then

(DF )p(v) = (DF )p(γ′(0)) = (F ○ γ)′(0) = lim
t→0

(F ○ γ)(t) − (F ○ γ)(0)
t

= lim
t→0

F (p + tv) − F (p)
t

.

Remark. Above is the “directional derivative” formula. We can also generalize differentiability to func-

tions between certain infinite-dimensional spaces. The approach by linear approximation is called Frechét

differentiability and the one by directional derivatives is called Gateaux differentiability.

We can use the above corollary to compute the (standard-basis) matrix for (DF )p in terms of partial derivatives.

Definition 5.2.11

Let U ⊂ Rn be open. Let F ∶ U → Rm and p ∈ U . The partial derivative
∂F

∂xi
(p) (for 1 ⩽ i ⩽ n) is

∂F

∂xi
(p) = lim

t→0

F (p + tei) − F (p)
t

,

if it exists. Here ei is the ith standard basis factor, i.e., the one defined by corresponding Kronecker deltas.
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Remark. If F is differentiable at p then
∂F

∂xi
(p) exists for all 1 ⩽ i ⩽ n: in particular

∂F

∂xi
(p) = (DF )p(ei).

This gives us a systematic way to deduce the matrix for (DF )p in standard basis. Specifically, if T ∶ Rn → Rm

is linear and {ei}ni=1 are the standard basis vectors for Rn, then for v ∈ Rn we have

T (v) = Av where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∣ ⋯ ∣
T (e1) ⋯ T (en)
∣ ⋯ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since (DF )p ∶ Rn → Rm is also linear, for v ∈ Rn we have (DF )p(v) = J v where

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∣ ⋯ ∣
(DF )p(e1) ⋯ (DF )p(en)

∣ ⋯ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ⋯ ∣
∂F

∂x1
(p) ⋯ ∂F

∂xn
(p)

∣ ⋯ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂x1
(p) ⋯ ∂F1

∂xn
(p)

⋮ ⋱ ⋮
∂Fm

∂x1
(p) ⋯ ∂Fm

∂xn
(p)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F1

⋮
Fm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Definition 5.2.12

The Jacobian matrix of F , JF,p, is defined as above, assuming all partials exist.

We have now shown that if F is differentiable at p then all partials at p exist and (DF )p(v) = JF,p(v). Next time:

we’ll show that we can go backwards, i.e., if all partials exist and are continuous then F is differentiable with

derivative being the Jacobian.

Beginning of April 12, 2021

Definition 5.2.13

Let U ⊂ Rn be open and let F ∶ U → Rm a function. We say F is of class Cr (r ∈ [1,∞]) if all partials

∂rF /(∂xj1⋯∂xir) (iterated partial derivatives) exist and are continuous on U .

By a previous proposition, this is true if and only if all component-wise partials ∂rFi/(. . . ) exist and are continuous

on U . In particular, F is of class C1 if and only if ∂Fi/∂xj exists and is continuous on U for all i, j.

Theorem 5.2.14

Let U ⊂ Rn be open and let F ∶ U → Rm be a C1 function. Then f is differentiable at all p ∈ U (and (DF )p is

represented by the Jacobian as always).

Proof. Let JF,p be the Jacobian of F at p ∈ U . Fix p (and also F ). Let J ∶= JF,p. We want to show that J is a

linear approximation of F near p.

Let T (v) ∶= J v (clearly T is linear). Let R(v) = RF,p,T (v) = F (p+v)−F (p)−J v. We want to show it is sublinear,

i.e., R(v)/∥v∥→ 0 as v → 0.

For 1 ⩽ i ⩽m, let Ri(v) be the ith coordinate of R(v). Then the ith component J v only cares about the ith row of

62



YQL - MATH 425b Notes 5.2 - Differential Multivariable Calculus; Total Derivatives Current file: 4-12.tex

J . Therefore it suffices to show that

Ri(v) = Fi(p + v) − Fi(p) − [
∂Fi

∂x1
(p) ⋯ ∂Fi

∂xn
(p)] v,

when divided by ∥v∥, tends to 0 as v → 0, for all 1 ⩽ i ⩽ m. Given ϵ > 0, we choose δ > 0 such that if ∥v∥ < δ then

p + v ∈ U (recall U is open) and

∣∂Fi

∂xj
(p + v) − ∂Fi

∂xj
(p)∣ < ϵ

n
. (∆)

(This is also possible since ∂Fi/∂xj is continuous.) We claim that this δ proves the claim.

Indeed, pick v = [v1 . . . vn]T be such that ∥v∥ < δ. Then

Ri(v) = Fi(p + v) − Fi(p) −
n

∑
i=1

vi
∂Fi

∂xi
(p) (literally a dot product)

= Fi(p +
n

∑
i=1

viei) − Fi(p +
n−1
∑
i=1

viei) − vn
∂Fi

∂xn
(p)+

Fi(p +
n−1
∑
i=1

viei) − Fi(p +
n−2
∑
i=1

viei) − vn−1
∂Fi

∂xn−1
(p)+

⋯ + Fi(p + v1e1) − Fi(p) − v1
∂Fi

∂x1
(p).

where v = v1e1 + ⋅ ⋅ ⋅ + vnen denotes the standard basis expansion of v ∈ Rn ((ei)j = δi,j). We want to show that

each line, when divided by ∥v∥, is less than ϵ/n. Indeed, this can be done using the single-variable MVT. Notice

that the function

g ∶ t↦ Fi(p +
j−1
∑
i=1

viei + tej)

is differentiable on t ∈ [0, vj] because the derivative ∂Fi/∂xj exists on U and so

g′(t) = ∂Fi

∂xj
(p +

j−1
∑
i=1

viei + tej).

Then, MVT says g(vj) − g(0) = g′(θ)(vj − 0) for some θ ∈ [0, vj], i.e.,

Fi(p +
j

∑
i=1

viei) − Fi(p +
j−1
∑
i=1

viei) = vj
∂Fi

∂xj
(p +

j−1
∑
i=1

viei + θej).

By (∆) and the fact that ∣vj ∣/∥v∥ ⩽ 1 (property of norm),

RRRRRRRRRRR

∂Fi

∂xj
(p +

j−1
∑
i=1

viei + θej) −
∂Fi

∂xj
(p)
RRRRRRRRRRR
< ϵ

n
because ∥(v1, . . . , vj−1, θ,0, . . . )∥ ⩽ ∥(v1, . . . , vj , . . . , vn)∥.

This proves the claim.

Example 5.2.15. Let F ∶ R3 → R3 be defined by F (x, y, z) = (ez cos y, e−z sin y, x2 + y2 + z2). Then F is

differentiable on all of R3 with Jacobian

JF,(x,y,z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −ez sin y ez cos y

0 e−z cos y −e−z sin y
2x 2y 2z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Each entry is a continuous function of x, y.z and so F is C1 (in fact C∞).
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Theorem 5.2.16: MVT for Rn → R

Let U ⊂ Rn be open and let F ∶ U → R be differentiable. Let p, q ∈ U be such that p + t(q − p) ∈ U for all

t ∈ [0,1] (i.e., the line segment connecting p, q lies entirely in U). Then there exists θ ∈ [0,1] such that

f(q) − f(p) = (DF )p+θ(q−p)(q − p).

The MVT does not apply to functions whose target space is of higher dimension. Consider F ∶ R → R2 defined by

F (t) = (cos t, sin t). Clearly F (2π)−F (0) = 0, but does it equal to (DF )t(2π−0) for any t? The answer is clearly no,

as the Jacobian (DF )t(2π) = 2π[− sin t cos t]T which can never be 0.

Theorem 5.2.17: Mean Value Inequality, n,m ⩾ 1

Let U ⊂ Rn be open and F ∶ U → Rm differentiable. For p, q ∈ U such that the segment {p + t(q − p) ∶ t ∈
[0.1]} ⊂ U , we have

∥F (q) − F (p)∥ ⩽ ( sup
t∈[0,1]

∥(DF )p+t(q−p)∥op)∥q − p∥ ⩽ sup
x∈U
∥(DF )x∥op∥q − p∥.

Beginning of April 14, 2021

Proof. Call sup
t∈[0,1]

∥(DF )p+t(q−p)∥op M for convenience. Instead of working with norms, we will make use of inner

products. If we can show ⟨F (q) − F (p), u⟩ ⩽M∥q − p∥ for all unit vectors u ∈ Rm then we are done. Why? If we

take

ũ ∶= F (q) − F (p)
∥F (q) − F (p)∥

if F (p) ≠ F (q)

then the claim follows (if F (p) = F (q) then this is trivially true).

Let u = [u1 . . . um]T be a unit vector in Rm and let v = q − p ∈ Rn. For t ∈ [0,1], let

g(t) = ⟨F (p + tv), u⟩ = u1F1(p + tv) + ⋅ ⋅ ⋅ + umFm(p + tv).

Note that each Fi is a differentiable function of t with derivative (DFi)p+tv(v). Therefore g is also differentiable

on [0,1] with

g′(t) = u1(DF1)p+tv(v) + ⋅ ⋅ ⋅ + um(DFm)p+tv(v) = ⟨(DF )p+tv(v), u⟩ .

(One can also show this using Leibniz product rule.) Therefore the 1-dimensional MVT applies to g: there exists

θ ∈ [0,1] such that g(1) − g(0) = g′(θ)(1 − 0) = g′(θ). Notice that

g(1) − g(0) = ⟨F (p) + F (v), u⟩ − ⟨F (p), u⟩ = ⟨F (q), u⟩ − ⟨F (p), u⟩ = ⟨F (q) − F (p) − u⟩

where

g′(θ) = ⟨(DF )p+θv(v), u⟩ ⩽ ∥(DF )p+θv(v)∥∥u∥ = ∥(DF )p+θv(v)∥ ⩽ ∥(DF )p+θ∥op∥v∥

where the first ⩽ uses Cauchy-Schwarz and the last term can be further bounded by M∥q − p∥.

Recall how we needed extra caution when interchanging integrals and sums (uniform convergence is required).
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Now we present an analogue.

Theorem 5.2.18: Differentiation under integral sign

For simplicity, assume we have a function of two variables f ∶ [a, b] × (c, d) → R (or Rm) be continuous.

Assume that
∂f

∂y
(x, y) exists and is continuous for all (x, y) ∈ [a, b] × (c, d). Let

F (y) = ∫
b

a
f(x, y) dx.

Then F is differentiable on (c, d) with derivative

F ′(y) = ∂

∂y
∫

b

a
f(x, y) dx = ∫

b

a

∂f

∂y
(x, y) dx,

i.e., in this case
∂f

∂y
and ∫

b

a
are interchangeable.

5.4 Implicit and Inverse Function Theorems

We start with the implicit function theorem and then use it to prove the inverse function theorem.

The idea for implicit function theorem: say we have n +m variables x1, . . . , xn and y1, . . . , ym and we “impose m

(nonlinear) constraints”. We look at points (x, y) ∶= (x1, . . . , xn, y1, . . . , ym) such that F (x, y) = z (F ∶ Rn+m → Rm)

such that the m “constraint equations” hold, i.e.,

z = (z1, . . . , zm) and F1(x, y) = z1, . . . , Fm(x, y) = zm.

The set of (x, y) such that these equations hold forms the level set of F at level z [think of it as F −1(z)].

Clearly this is a very standard way to describe curves surfaces, etc., for example the circle x2 + y2 = z in R2. For

theory of smooth manifolds to be reasonable, we need the fact that “suitably nice” level sets are smooth manifolds,

and this is given by the implicit function theorem.

Main idea: locally near (x0, y0), can we write F −1(z) as a graph of some function? (why “some”? See below.)

Example 5.4.1. Same old example: n = m = 1, z = 1, F (x, y) = x2 + y2 = z: clearly the condition fails

globally: a circle is not a graph of a function as it fails the horizontal line test and the vertical line test (so it

is not a graph of x as a function of y and not a graph of y as a function of x, either).

However, if we pick any point on the circle, for example (
√
2/2,
√
2/2), there exists a neighborhood in which

the horizontal line test is satisfied (so it’s a graph of x as a function of y, in this case x =
√
1 − y2) and also a

neighborhood in which the vertical line test is locally satisfied (so it can also be written as a graph of y as a

function of x, in this case y =
√
1 − x2).

Even for “special” points like (0,1) where no neighborhood satisfies the horizontal line test (thus we cannot

locally express this level set as a graph of x as a function of y), there are neighborhoods that pass the vertical

line test, e.g., take y =
√
1 − x2. Locally, the level set coincides with the graph of this function.
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Note that we have 4 open subsets of the circle, each of which corresponds to the graph of

some function:

(1) y =
√
1 − x2, taking x as a coordinate function,

(2) y = −
√
1 − x2, taking x as a coordinate function,

(3) x = −
√
1 − y2, taking y as a coordinate function, and

(4) x =
√
1 − y2, taking y as a coordinate function.

We can also perform “coordinate changes” between two patches: t ↦ ±
√
1 − t2 is smooth. The functions whose graphs

recover the level set locally are smooth in this case. This defines a “smooth atlas” on the circle, making it a smooth

manifold.

Beginning of April 16, 2021

Recall from last time that, for our specific example, level set of F can be locally expressed as the graph of some

coordinates as functions of other coordinates.

To build our hypothesis, suppose U ∈ Rm+n open, F ∶ U → Rm of class Ck (k ⩾ 1), z0 ∈ Rm. Then we have a

level set F −1(z0) ∈ U (pre-image, not inverse, and we will keep using such notation in this section). We also have

a “linearized version” of the level set near ker(DF )(x0,y0) for any (x0, y0) ∈ F −1(z). Recall (DF )(x0,y0) is a linear

transformation from Rm+n → Rm, so its kernel, ker(DF )(x0,y0) ⊂ Rm+n, heuristically gives the tangent space to the

level set at (x0, y0), if we treat (x0, y0) as the origin of this space (all points in the kernel get mapped to the very

same value, namely (x0, y0) because (x0 + y0) + 0 = (x0 + y0)).

Example 5.4.2. Again let n = n = 1 and consider F (x, y) = x2 + y2 and z0 = 1. Thus we have the unit circle

in R2 has the level set. Take (x0, y0) ∶= (1/
√
2,1/
√
2). Then

(DF )(x0,y0) = [2x0 2y0] = [
√
2
√
2] ,

and so

ker(DF )(x0,y0) = {(u, v) ∈ R
2 ∣ (u, v)T (

√
2,
√
2) = 0} = span{(−1,1)}.

What does this give? The span containing (x0, y) gives the tangent line to the circle at (x0, y0), indeed the

tangent space! Alternatively (and preferably) one can view the tangent space as ker(DF )(x0,y0) with (x0, y0)
being the origin of the space.

Thinking abstractly, assume γ(0) = 0 for some γ ∶ (a, b)→ F −1({z0}). We can view γ as γ ∶ (a, b)→ Rm+n and

(F ○ γ)′(0) = 0 since F (γ(t)) = z0 for all t.

Recall the chain rule; this tells us (DF )(x0,y0)(γ′(0)) = 0, i.e., abstract tangent vectors are in ker(DF )(x0,y0).

The linearization tells us that a vector in Rm+n being in ker(DF )(x0,y0) amounts to satisfying m linear[!] equations

(where the original F gives nonlinear equations).

Best case scenario (no redundancies): each time an equation is added (each time a constraint is added), the

dimension of the solutions decreases by 1. Then ker(DF )(x0,y0) is (precisely) n-dimensional (rather than > n). Then

the rank-nullity theorem states that rank(DF )(x0,y0) =m+n−n =m, i.e., the image of (DF )(x0,y0) is m-dimensional.
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Refresher: if rank(DF )(x0,y0
= m, solving (DF )(x0,y0)(v) = 0 amounts to solving the RREF version. While doing so,

we are able to express some variables as a linear function of other variables. Thus we can write ker(DF )(x0,y0) as

the graph of m of the coordinates (the pivot columns) as linear functions of the other n (the free variables).

This “maximal rank” assumption will be our hypothesis for the implicit function theorem, and we’ll show that even

the nonlinear version holds, but of course it’s harder.

Example 5.4.3. Take again n =m = 1. Consider F ∶ R2 → R by (x, y)↦ (x2 + y2)2 − 2(x2 − y2). Take z0 = 0,

Then F −1({z0}) = {(0,0), (±
√
2,0)}. See figure below. (This is called the Lemniscate of Bernoulli.)

Since (DF )(x,y) = [2(x2 + y2)(2x) − 4x 2(x2 + y2)(2y) + 4y], a simple substituion with (x, y) = (
√
2,0) gives

(DF )(√2,0) = [4
√
2 0] ,

which is of rank 1. It follows that ker(DF )(√2,0) = span{(0,1)} and indeed the tangent line is just the vertical

line passing (
√
2,0).

However, what about (0,0)? Clearly (DF )(0,0) = [0 0]. Its rank is 0 and the rank-nullity says ker(DF )(0,0) is

of dimension 2 and thus the entire R2. This violates the “maximal rank” assumption and the implicit function

theorem will not apply. This is what happens at a singular point (studied especially in algebraic geometry).

Theorem 5.4.4: Implicit function theorem

(Dini, 1876) Let U ⊂ Rm+n open, let F ∶ U → Rm be a function of class Ck (1 ⩽ k ⩽∞), and let (x0, y0) ∈ U ,

z0 ∈ Rm be such that F (x0, y0) = z0 (i.e., (x0, y0) ∈ F −1({z0}). We write the standard basis matrix of

(DF )(x0,y0) (an m × (m + n) matrix) as

[Am×n ∣ Bm×m] and assume B is invertible.

(This is possible if we assume rank(DF )(x0,y0) = m because we can simply apply RREF and put all pivot

columns into B.)

Then, for all sufficiently r > 0, there exists τ0 such that, for all τ < τ0, the following holds:

(1) B(x0, τ) ×B(y0, r) ∈ U , and

(2) there exists a unique function g ∶ B(x0, τ)→ B(y0, r) with

F −1({z0}) ∩ (B(x0, τ) ×B(y0, r)) = graph of g ∶= {x, g(x) ∣ x ∈ B(x0, τ)}.
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(3) Furthermore, g is of class Ck as well.

The proof of this theorem will be divided into several lemmas.

Beginning of April 19, 2021

Lemma 5.4.5

Let U ⊂ Rn+m be open and let F ∶ U → Rm be Ck (1 ⩽ k ⩽∞) such that (0,0) ∈ U (Rn+m viewed as Rn ×Rm,

so first component in Rn and second in Rm) and (0,0) ∈ F −1({0}) (preimage of 0 ∈ Rm). (More generally, if

we replace (0,0) ∈ U and (0,0) ∈ F −1({0}) to get the i.f.t.) Assume

(DF )(0,0) = [Am×n ∣ Bm×m] where B is invertible, i.e., rank(B) =m.

(Again we can replace (0,0) by more general coordinates, but this reduces the notational simplicity.) Then for

sufficiently small r > 0, there exists τ0 > 0 such that, for all τ ⩽ τ0,

(1) B(0, τ) ×B(0, r) ⊂ U ,

(2) there exists a unique function g ∶ B(0, τ)→ B(0, r) (from Rn to Rm) with

F −1({0}) ∩ (B(0, τ) ×B(0, r)) = graph of g ∶= {(x, g(x)) ∣ x ∈ B(0, τ)}.

The function g is locally Lipschitz at 0, i.e., there exists L such that for x ∈ B(0, τ) small enough, we have

∥g(x) − g(0)∥ ⩽ L∥x − 0∥.

(Note that g(0) = 0 since F (0,0) = 0.)

Proof. For (x, y) ∈ U , let R(x, y) ∶= F (x, y) − F (0,0) − [A ∣ B][x ∣ y]T , i.e., (since F (0,0) = 0)

F (x, y) = Ax +By +R(x, y).

Thus for (x, y) ∈ U , we have

(x, y) ∈ F −1({0}) ⇐⇒ F (x, y) = 0 ⇐⇒ Ax +By +R(x, y) = 0.

The RHS looks almost like we are trying to solve a function of y: the ⇐⇒ chain is further extended to

(x, y) ∈ F −1({0}) ⇐⇒ By = −Ax −R(xy) ⇐⇒ y = −B−1(Ax +R(x, y)).

The last step is justified as B is assumed to be invertible. We would have been done if R(x, y) depends solely on

x. Unfortunately it is not the case, but we can view it as a fixed-point theorem. For a fixed x, we can view the

RHS as a function of y. By the uniqueness of fixed-point there will be a unique y where the LHS=RHS.

Define r0 > 0 such that B(0, r0) ×B(0, r0) ⊂ U . If x ∈ B(0, r0), we can define an operator Kx ∶ B(0, r0)→ Rm by

Kx(y) ∶= −B−1(Ax +R(x, y)).
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To invoke Banach contraction mapping theorem, we need to ensure Kx is a (strong) contraction and that the

space on which Kx maps into itself is Banach.

First note that R(x, y) = F (x, y) −Ax −By is Ck just like F is (as linear functions Ax,By are C∞) and

(DR)(0,0) = [A ∣ B] − [A ∣ B] = 0 (zero matrix).

Let
∂R

∂y
(x, y) be the “partial Jacobian of R” at (x, y) where we only take the y partials not the x partials. Note

that
∂F

∂y
(0,0) = B so

∂R

∂y
= (0,0) = B −B = 0. It follows that

∂R

∂y
is a function U →Mm×n(R) where each entry is

a partial derivative of R. Since R is of class Ck, these entries are in particular continuous. For convenience we

pick the Euclidean norm on U . We know

∂R

∂y
∶ (U, ∥ ⋅ ∥E)→ (Mm×n(R), ∥ ⋅ ∥op)

is continuous. Thus, for ϵ ∶= 1/(2∥B−1∥op), there exists r > 0 (WLOG, also ⩽ r0) such that if ∥x∥, ∥y∥ ⩽ r then

∥∂R
∂y
(x, y) − ∂R

∂y
(0,0)∥

op

= ∥∂R
∂y
(x, y)∥

op

< 1

2∥B−1∥op
. (∆)

(Note B−1 ≠ 0 so its norm is not zero and division makes sense.) On the other hand, by making r smaller if

necessary, we can also ensure

det [∂F
∂y
(x, y)] ≠ 0 for ∥x∥, ∥y∥ ⩽ r

because det [∂F
∂y
(0,0)] = det(B) ≠ 0 and (1) all entries of

∂F

∂y
(x, y) are continuous and (2) the determinant

itself is a continuous operator w.r.t. the entries.

Claim. If ∥x∥, ∥y1∥, ∥y2∥ ⩽ r, then ∥Kx(y1) −Kx(y2)∥ ⩽ ∥y1 − y2∥/2 so Kx is a contraction. To see this,

∥Kx(y1) −Kx(y2)∥ = ∥ −B−1(Ax +R(x, y1)) − (−B−1(Ax +R(x, y2))∥

= ∥ −B−1(R(x, y1) −R(x, y2))∥

⩽ ∥B−1∥op∥R(x, y1) −R(x, y2)∥.

The second term ∥R(x, y1)−R(x, y2)∥ can be further bounded by ∥y2−y1∥/(2∥B−1∥op) using mean value inequality

(which we will continue next lecture).

Beginning of April 19, 2021

By the mean value inequality, for a fixed x, R(x, ⋅) is a C1 function of y. Thus it is differentiable with total

derivative
∂R

∂y
(x, y). Therefore

∥R(x, y1) −R(x, y2)∥ ⩽ sup
t∈[0,1]

∥∂R
∂y
(x, y1 + t(y2 − y1))∥ ⋅ ∥y2 − y1∥ <

∥y2 − y1∥
2∥B−1∥op

by (∆) (since ∥x∥, ∥y1∥, ∥y2∥ are all < 1 and the ball is convex so ∥y1 + t(y2 − y1)∥ < r too). Therefore Kx is a

contraction. [End of proof of claim]

To ensure Kx maps B(0, r) maps into itself, we will make x smaller if necessary. Since the function

x↦Kx(0) = −B−1(Ax +R(x,0))
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is continuous, for ϵ = r/2 there exists τ > 0 (WLOG assume τ ⩽ r) such that if ∥x∥ < τ then ∥Kx(0)∥ < r/2.

Claim. If ∥x∥ < τ and ∥y∥ < r then ∥Kx(y)∥ ⩽ r. Indeed,

∥Kx(y)∥ = ∥Kx(y) −Kx(0) +Kx(0)∥

⩽ ∥Kx(y) −Kx(0)∥ + ∥Kx(0)∥

⩽ ∥y∥
2
+ ∥Kx(0)∥ ⩽

r

2
+ r

2
= r.

[End of proof of claim]

Therefore if ∥x∥ ⩽ τ then Kx is a contraction on the complete B(0, r) ⊂ Rm. Therefore by Banach contraction

mapping theorem, Kx has a unique fixed point, i.e., if ∥x∥ ⩽ τ then there exists a unique y ∈ B(0, r) such that

Kx(y) = y, so

y = −B−1(Ay +R(x, y)) ⇐⇒ F (x, y) = 0.

Therefore given x, there exists a unique y such that (x, y) ∈ B(0, τ) ×B(0, r) satisfies Kx(y) = y. Now we define

g ∶ B(0, τ)→ B(0, r)

by taking g(x) to be the unique fixed point y. It follows that the set of such (x, y)’s form the graph of g, and

F −1({0}) ∩ (B(0, τ) ×B(0, r)) = graph of g.

Claim. If L ∶= ∥B−1∥op∥A∥op, then 4L is a local Lipschitz constant for g at 0, i.e., for small enough x,

∥g(x) − g(0)∥ ⩽ 4L∥x − 0∥ = 4L∥x∥.

We know that g(x) is (the) fixed point for Kx, so g(x) =Kx(g(x)). Therefore

∥g(x)∥ = ∥Kx(g(x))∥ = ∥Kx(g(x)) −Kx(0) +Kx(0)∥

⩽ ∥Kx(g(x)) −Kx(0)∥ + ∥Kx(0)∥

= ∥Kx(g(x)) −Kx(g(0))∥ + ∥Kx(0)∥

⩽ ∥g(x) − g(0)∥
2

+ ∥B−1(Ax +R(x,0))∥

⩽ ∥g(x)∥
2
+ ∥B−1∥op∥Ax +R(x,0)∥

⩽ ∥g(x)∥
2
+ ∥B−1∥op∥A∥op∥x∥ + ∥B−1∥op∥R(x,0)∥.

Note that lim
(x,y)→0

R(x, y)
∥(x, y)∥

= 0 because F is differentiable. Therefore treating y = 0 we have lim
x→0

R(x,0)
∥(x,0)∥

= 0.

Assuming ∥A∥op = ϵ > 0 (for now we’ll assume it’s strictly positive), for small enough x ⩽ τ ′ (WLOG τ ′ ⩽ τ)

∥R(x,0)∥
∥(x,0)∥

⩽ ∥A∥op Ô⇒ ∥R(x,0)∥ ⩽ ∥A∥op∥x∥.

Then,

∥g(x)∥ ⩽ ∥g(x)∥
2
+ 2∥B−1∥op∥A∥op∥x∥

so
1

2
∥g(x)∥ ⩽ 2∥B−1∥op∥A∥op∥x∥ Ô⇒ ∥g(x)∥ ⩽ 4L∥x∥ where L ∶= ∥B−1∥op∥A∥op.
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[End of proof of claim]

Local Lipschitz condition then implies that g is continuous at 0. Therefore there exists τ ′ ⩽ τ such that

g(B(0, τ ′)) ⊂ B(0, r). By construction, F −1(0) ∩ (B(0, τ) × B(0, r)) is still the graph of g ∶ B(0, τ ′) → B(0, r).
This g is the function we have been looking for for so long. And clearly, if g1, g2 both have this property, then

they must have the same graph (uniqueness of Kx’s fixed points) and they must equal.

Lemma 5.4.6

In the previous lemma, the unique function g is not just Lipschitz: it is differentiable at zero with total

derivative given by −B−1A where (DF )(0,0) = [A ∣ B].

Proof. For convenience let τ be the τ ′ in the previous claim (the sufficiently small bound on x). Then for

x ∈ B(0, τ), g(x) is the unique fixed point of Kx. Thus

g(x) =Kx(g(x)) = −B−1(Ax +R(x, g(x))).

It follows that

∥g(x) − g(0) − (−B−1A)x∥ = ∥g(x) − (−B−1A)x∥

= ∥ −B−1(Ax +R(x, g(x))) +B−1Ax∥

= ∥B−1(R(x, g(x))∥ ⩽ ∥B−1∥op∥R(x, g(x))∥,

and so

∥g(x) − g(0) − (−B−1A)x∥
∥x∥

⩽ ∥B−1∥op
∥R(x, g(x))∥

∥x∥

= ∥B−1∥op
∥R(x, g(x))∥
∥(x, g(x))∥

⋅ ∥(x, g(x))∥
∥x∥

.

The last equation since x ≠ 0 implies (x, g(x)) ≠ 0. Since g is continuous at 0, as x → 0 we have g(x) → 0 and so

(x, g(x))→ 0 ∈ Rn+m. Since F is differentiable, the term ∥R(x, g(x))∥/∥(x, g(x))∥→ 0. For the last term,

∥(x, g(x))∥
∥x∥

= ∥(x,0) + (0, g(x))∥
∥x∥

⩽ ∥x∥ + ∥g(x)∥
∥x∥

⩽ 1 + 4L

for sufficiently small (but nonzero) x.

(In the case where ∥A∥op = 0 (for example F (x, y) = x2 − y and so (DF )(x,y) = [2x 1] and (DF )(0,0) = [0 1]),

pick an arbitrary C > 0 and use the fact that lim
x→0

R(x,0)/∥(x,0)∥ < ∥A∥op +C. Then the claim is analogous, with

L being repalced by L ∶= ∥B−1∥op(∥A∥op +C).)
Therefore as x→ 0, this term → 0 as well. Hence the entire thing → 0, i.e., g is differentiable at 0 with derivative

−B−1A. Beginning of April 23, 2021

71



YQL - MATH 425b Notes 5.4 - Implicit and Inverse Function Theorems Current file: 4-23.tex

Lemma 5.4.7

Now we show that g ∶ B(0, τ)→ B(0, r) is differentiable at all x ∈ B(0, τ) with derivative at x being

−(∂F
∂y
(x, g(x)))

−1
(∂F
∂x
(x, g(x))) = −B−1x,g(x)Ax,g(x).

Proof. Let x0 ∈ B(0, τ) and let y0 = g(x0) be arbitrarily chosen. Define

F̃ (x, y) ∶= F (x + x0, y + x0).

This is a function defined on B(0, τ ′)×B(0, r′) as long as τ < t− ∥x0∥ and r′ < r− ∥y0∥ (so x+x0 is still in B(0, τ)
and likewise for the other one). Notice that F̃ is of class Ck as is F itself. It follows clearly that

∂F̃

∂y
(0,0) = ∂F

∂y
(x0, y0)

is invertible and we can simply apply the previous result to F̃ : B(0, τ ′) → B(0, r′) → Rm. Thus there exists a

τ ′′ ⩽ τ ′ and a function g̃ ∶ B(0, τ ′′)→ B(0, r′) (a weaker statement than we can actually get: g̃ to B(0, r′′) for some

smaller r′′ but we don’t care) such that F̃ (x, g̃(x)) = 0 for all x ∈ B(0, τ ′′) and g̃ is differentiable with derivative

−(∂F̃
∂y
(0,0))

−1

(∂F̃
∂x
(0,0)) .

Claim For small enough x with ∥x∥ < τ ′′, we have g(x) = g̃(x − x0) + y0.

To see this, notice that g(x) is the unique point in B(0, r) with F (x, g(x)) = 0. On the other hand,

0 = F̃ (x − x0, g̃(x − x0)) = F (x, g̃(x − x0) + y0)

so by uniqueness of fixed points, g(x) = g̃(x − x0) + y0. [End of proof of claim]

Therefore by chain rule, g is differentiable at x0 (since g̃ is at 0) and

(Dg)x0 = (Dg̃)0 = −(
∂F

∂y
(0,0))

−1
(∂F̃
∂x
(0,0)) = −(∂F

∂y
(x0, g(x0)))

−1
(∂F
∂x
(x0, g(x0)) ,

proving the differentiability of g on points other than the origin.

Lemma 5.4.8

Our unique function g is of class C1.

Proof. We want to show that each entry of (Dg)x is a continuous function of x ∈ B(0, τ). We have

(Dg)x = −(
∂F

∂y
(x, g(x)))

−1
(∂F
∂y
(x, g(x)) = −B−1x,g(x)Ax,g(x).

Notice that the entries of Ax,y and Bx,y are partial derivatives of components of F and are thus continuous.

Since g is continuous on B(0, τ), entries of Ax,g(x),Bx,g(x) are composition of continuous functions and are

therefore continuous. It remains to deal with B−1x,g(x), but fortunately we have Cramer’s rule which gives us an

72



YQL - MATH 425b Notes 5.4 - Implicit and Inverse Function Theorems Current file: 4-23.tex

explicit way of computing inverses. Since det(Bx,g(x)) is nonzero (B invertible),

B−1x,g(x) =
1

det(Bx,g(x))
⋅ cofactor(Bx,g(x))T

where the (i, j) entry of the cofactor matrix is (−1)i+j times the determinant of the original matrix (i.e. B) but

without ith row and jth column. (Then we take transpose.) Since determinants are continuous, this entire thing

is also continuous. Thus g is C1.

Lemma 5.4.9

One more final lemma before we prove the implicit function theorem: assuming F is Ck, then g is not only

C1 but also Ck. True for 1 ⩽ k ⩽∞.

Proof. We use induction on k. The base case k = 1 is shown in the lemma above. Now for the inductive step,

assume (F ∈ Ck and in particular F ∈ Ck−1) implies (g ∈ Ck−1). To show g is of class Ck, it suffices to show

that the entries of (Dg)x are Ck−1 functions of x. (kth partials of g is the same as (k − 1)th partials of entries of

(Dg)x).

Recall that (Dg)x = −B−1x,g(x)Ax,g(x). Since F is Ck, entries of (DF )(x,y) are Ck−1 functions of (x, y), so entries

of Ax,g(x),Bx,g(x) of Ck−1. By Cramer’s rule, B−1x,g(x) is also Ck−1 and thus (Dg)x is Ck−1.

Proof of implicit function theorem. It should be obvious now.

Implicit Function Theorem

Definition 5.4.10

If U,V ⊂ Rm are open, then F ∶ U → V is a Ck diffeomorphism (1 ⩽ k ⩽∞) if:

(1) F is of class Ck, and

(2) F −1 is also Ck (this is not true in general; it might not even be differentiable).

Example 5.4.11. A non-example of diffeomorphism: f ∶ R → R defined by f(x) = x3. Immediately we

see f is of class C∞ but the inverse f−1(y) = 3
√
y is not even differentiable at origin. (In this case f is a

homeomorphism nonetheless, i.e, bicontinuous bijection.)

Proposition 5.4.12

If U ⊂ Rm, V ⊂ Rn are open and F ∶ U → V is a diffeomorphism, then m = n.

Proof. We have F −1 ○ F = idU so

(DF −1)F (p)(DF )p = In×n

and likewise F ○F −1 = idV . Of course this requires the invertibility of (DF )p so this requires (DF )p to be square!
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Therefore m = n.

Therefore, “nonlinear invertibility” implies “linear invertibility of linear approximations / total derivatives”. But

what about the converse?

Theorem 5.4.13: Inverse function theorem

Let U0 ⊂ Rn be open and let f ∶ U0 → Rm be a Ck function (1 ⩽ k ⩽ ∞). Let p ∈ U0 such that (Df)p is

invertible (by above we already have n =m).

Claim: there exists an open subset p ∈ U ⊂ U0 such that f(p) ∈ V ⊂ Rn = Rm such that f is a Ck diffeomor-

phism from U to V .

Beginning of April 26, 2021

Proof. Main idea: set things up to apply the implicit function theorem. Note that U0 × Rn is an open subset of

Rn+n = R2n. Now we define F ∶ U0 ×Rn → Rn by F (x, y) = f(x)− y (where x ∈ U0, y ∈ Rn). If we define q ∶= f(p)
then immediately F (p, q) = 0, so (p, q) ∈ F −1(0). We also have

(DF )(p,q) = [
∂F

∂x
(p, q) ∂F

∂y
(p, q)] .

Notice that
∂F

∂y
(p, q) = −I (for y, F a constant function minus y), and

∂F

∂x
(p, q) is just (Df)p. So

(DF )(p,q) = [(Df)p ∣ −I] .

We know both blocks are invertible. Specifically, since (Df)p is invertible, using these columns, we can apply

the implicit function theorem to the first n coordinates and express the level set (of F at 0) as a graph of x as a

function of y.

To put formally, applying the implicit function theorem to the first n coordinates, there exists an open neighbor-

hood Up × Vq of (p, q) ∈ U0 ×Rn and a unique function h ∶ Vq → Uq with

F −1(0) ∩ (Up × Vq) = graph of h = {(h(y), y) ∣ y ∈ Vq},

where h is of class Ck. It follows that F (h(y), y) = 0 for all y ∈ Vq, i.e.,

f(h(y)) − y = 0 for all y ∈ Vq Ô⇒ f(h(y)) = y Ô⇒ f ○ h = idVq
.

Then h(q) = p because (p, q) ∈ F −1(0)∩ (Up ×Vq) = graph (h). Since (Df)p and (Dh)q are square, chain rule and

linear algebra gives

(Df)p ○ (Dh)q = id Ô⇒ (Dh)q ○ (Df)p = id.

(Thankfully any one-sided inverse of a square matrix is a two-sided inverse!) Thus (Dh)q is invertible.

We can repeat the process above and do the same thing with h instead of f . Define H ∶ Up × Vq → Rn by

H(x, y) = h(y) − x. We again have H(p, q) = 0 so (p, q) ∈H−1(0). Then,

(DH)(p,q) = [−I ∣ (Dh)q]

where we know both blocks are invertible. Using the implicit function theorem on the right, there exists open

neighborhood U ′p×V ′q ⊂ Up×Vq and a unique function g ∶ U ′p → V ′q with H−1(0)∩(U ′p×V ′q ) = graph (g). Following

the same argument, h ○ g = idU ′p .
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Claim. g = f restricted on U ′p. Indeed, for x ∈ U ′p, g(x) ∈ V ′q ⊂ Vq. Using f ○ h = idVq , g(x) = f(h(g(x)), and since

h ○ g is also identity on U ′p, g(x) = f(x), proving the subclaim. [END OF PROOF OF CLAIM]

However, since f may well be not linear, there is no guarantee that this we have a bisection — the inverse may

only work for a smaller subset. The claim below addresses this issue and thus proves the main theorem.

Claim. Let V ′′q ∶= h−1(U ′p). Then f(U ′p) ⊂ V ′′q .

Since h has domain Vq, we know V ′′q ⊂ Vq. Note that since h ○ g is idU ′p
and g = f restircted to U ′p, we have h ○ f

resitrcted to U ′p is still the same identity map on U ′p. Then if y ∈ V ′′q , y = f(h(y)) = g(h(y)) so V ′′q ⊂ V ′q .

Therefore, if x ∈ U ′p then x = h(f(x)), so f(x) ∈ h−1(U ′p) = V ′′q . [END OF PROOF OF CLAIM]

Now that we have obtained two bijective maps, f ∶ U ′p → V ′′q and h ∶ V ′′q → U ′p, the composition each way gives

the identities and this proves the inverse function theorem.

5.5 A more abstract View on Differential Forms

Definition 5.5.1

If V is a vector space, let

T ∗V =
∞
⊕
n=0

V ⊗ ...⊗ V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

.

This is a vector space and it has multiplication by ⊗. This defines a ring (even an R-algebra) and is called the

tensor algebra of V . (Think noncommutative polynomials in the basis vectors of V .) And we have a graded

R-algebra, where a piece of degree k is V ⊗k.

Definition 5.5.2

The exterior algebra of V is

⋀∗ V =
T ∗V

(x⊗ x ∀x ∈ V )
where the denominator (quotient) denotes the two-sided ideal generated by elements of form x ⊗ x. Even

better: the quotient (graded ring / homogeneous ideal) is another graded ring. The number of tensor factors

gives a well-defined grading on ⋀∗ V :

⋀∗ V =
∞
⊕
k=0
⋀k

V,

the kth exterior power of V .

The natural map V k → ∧kV defined by

v1 ⊗ ....⊗ vk ↦
1

k!
[v1 ⊗ ...⊗ vk]

(equivalence class on RHS) restricts to an isomorphism

{v ∈ V ⊗k ∶ v alternating bilinear} ≅→⋀k
V,

with inverse

[v1 ⊗ ...⊗ vk]→ ∑
σ∈Sk

sgn(σ) vσ(1) ⊗ ...⊗ vσ(k).
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This gives a highly useful approach to wedge products: we can naturally identify v1 ∧ ... ∧ vk with the equivalence

class [v1 ⊗ ...⊗ vk], a much cleaner approach than wedge products done in HW14.

It follows that if α ∈ ⋀k V and β ∈ ⋀ℓ V , then a ∧ β is in ⋀∗ V =⊕∞n=0⋀n V .

Beginning of April 28, 2021 [last day of class!]

Vector Bundles

In general, let M be a smooth manifold second-countable Hausdorff topological space equipped with equivalence

classes of smooth atlases ∶= {(uα, φα) ∶ α ∈ A} where Uα ⊂ M and φα ∶ Uα → Vα ⊂ Rn (open) is a homomorphism.

In other words, φ−1α ∶ Vα → Uα is a local parametrization for M in the patch Uα. We further require ⋃
α∈A

Uα = M

and such that the “transition functions” (φ−1) are smooth. We say two atlases are equivalent if their union is still a

smooth atlas.

Definition 5.5.3

For p ∈M , we’ve previously defined TpM to be the set of equivalence classes of curves at p to M . We define

T ∗pM to be the dual space of TpM , contangent space to M at p.

Then we can define vector bundles over smooth manifold (smoothly varying collection of vector spaces [all of same

dimension, called the rank of vector bundle] for each point of M). Similarly, the cotangent spaces T ∗pM organize

into the cotangent bundle T ∗M .

So far, we have linear algebra operations like ⊕,⊗,∗ ,⋀∗, and so on. All of these can be extended and can be applied

to bundles ( we can take these operations “point by point” and this upgrades to a construction on vector bundles).

For example, we can form ⋀k(T ∗M), the kth exterior power of the cotangent bundle of M .

Definition 5.5.4

Say E
π→M is a vector bundle. This means E is the disjoint union of all vector spaces over all points in M ,

and on top of that it has a smooth manifold itself. Here π sends a vector in (the vector space at p, a subset

of E) to the point p, and we define Ep ∶= π−1({p}), the vector space we have at point p ∈M .

A section of the vector bundle is a map f ∶M → E such that π ○ f = id. In other words, f(p) ∈ π−1({p}) = Ep

for all p ∈M . Heuristically a section of a vector bundle is like a function with variable codomain: f(p) is a point

in the vector space that we assigned to point p. For example a vector field on M is a section of TM .

Definition 5.5.5

A differential k-form on M is a section of ⋀k(T ∗M). In particular a 1-form is a section of T ∗M .
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Pullbacks

Definition 5.5.6

Let M,N be smooth manifolds and F ∶ M → N a smooth map. Let α be a k-form on N (at q ∈ N , we have

αq ∈ ⋀k(T ∗q M) ≅ Altk(TqN,R) ).

Now we define the pullback F ∗α: for p ∈M , we want an element of Altk(TpM,R), a alternating multilinear

map taking k inputs in TpM and gives a real number. (F ∗α)p is defined to act on inputs v1, ..., vk ∈ TpM by

taking

αF (p)((DF )p(v1), ..., (DF )p(vk)).

Facts. Some basic facts about pullbacks:

(1) Pullbacks + exterior derivatives: F ∗(dα) = d(F ∗α).

(2) Pullbacks + wedge products: F ∗(α ∧ β) = F ∗(α) ∧ F ∗(β).

(3) (Exterior derivatives + wedge products: d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ) where α is a k-form.)

Integration of Differential Forms on Manifolds

Note that ⋀n(T ∗M) for a n-manifold M is a rank 1 vector bundle (line bundle) on M .

Definition 5.5.7

We say M is orientable if there exists a nowhere vanishing (global) section ω of ⋀n(T ∗M). If so, the

orientation on M is defined to be the equivalence class of such sections modulo multiplication, [ω], by

always positive functions. Non-orientable manifolds include the Mobius band, the Klein bottle, and so on.

Definition 5.5.8

If α is a top-degree (degree n) form on an oriented n-manifold M , then we can define the integral of α on

M by partition of unity, that is, to write α as a sum of forms such that, for each term αi of the sun, there

exists some oriented coordinate patch (Ui, φi) such that αi vanishes outside U .

Now to integrate αi, we use pullback by φ−1i to get a compactly supported n-form on an open subset of Rn.

Then it remains to sum over all i in the original sum decomposition of α.

This process is independent of choice of partitions.

For example, if α is a k-form on RN , we can pull back α by any r ∶ [0,1]k → Rn (or more general subset). This leads

to the notion of integration of chains.
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Theorems about Integrations

Theorem 5.5.9

[Integrals + pullbacks] If M,N are oriented manifolds, F ∶ M → N a smooth and orientation-preserving

diffeomorphism, and α an n-form on N , then

∫
N
α = ∫

M
F ∗(α).

This is the differential form equivalence of change of variable formula.

Theorem 5.5.10: Stokes’ Theorem

[Integrals + exterior derivatives] Let M be an oriented n-manifold with boundary ∂M (oriented too) and α

a (n − 1)-form. Then

∫
M

dα = ∫
∂M

α.

Indeed, we can pull back α via the inclusion map ∂M ↪M .

This generalizes the classical theorems.

For line integrals. For example we can define a 1-form ds on C by adding the requirement that in any local

parametrization r(t) for C, we have

r∗(ds) = ∥r′(t)∥dt.

Then any 1-form on an oriented curve C is equal to fds for some function on C. Then how do we integrate fds on

C using pullback?

∫
C
f ds = ∫

b

a
f(r(t))∥r′(t)∥ dt

where [a, b] is the domain of r.

How about C ∈ Rn for some n and we have a 1-form α ∶ p1dx1 + ... + pndxn on Rn? Similar! We can pull back α via

inclusion map C ↪ Rn and get some 1-form on C: (F ⋅ T ) ds where

F = [p1 ... pn]
T

and T (r(t)) = r′(t)
∥r′(t)∥

.

This explains the line integrals of vector fields as curves.

For classical Green’s theorem. We take Stokes’ theorem for M on a 2-manifold in ambient R2. Assuming α a

1-form on M comes from 1-form on all of R2 with α = Pdx +Qdy, using properties of wedge product (cf. HW14)

gives

dα = (∂Q
∂x
− ∂P

∂y
)dx ∧ dy

and

∫
M

dα = ∮
∂M

α Ô⇒ ∫
M
(∂Q
∂x
− ∂P

∂y
) dx dy = ∮

∂M
(F ⋅ T ) ds where F =

⎡⎢⎢⎢⎢⎣

P

Q

⎤⎥⎥⎥⎥⎦
.

For surface analogue & classical Stokes’ and divergence theorems. We define a 2-form dA on S such that, for

any local parametrization r(u, v), we set

r∗(dA) = ∥ ∂r
∂u
× ∂r

∂v
∥du ∧ dv.
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(This is well-defined.) Just like ds above, here dA is nowhere vanishing and it represents orientation classes). Then

the classical surface integral with respect to area, ∫
S
f dA, is the same as integrals of arbitrary 2-forms on surfaces.

Let S ⊂ R3. We have a 2-form on S that comes from a 2-form

α ∶ Pdx ∧ dy +Qdx + dz +Rdy ∧ dz on R3.

We can pull back α via the inclusion map S ↪ R3 which is again some fdA:

f = (F ⋅ n̂)dA where F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R

−Q
P

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and n̂(r(u, v)) =
∂r
∂u
× ∂r

∂v

∥ ∂r
∂u
× ∂r

∂v
∥
.

This gives the flux integrals and explains classical surface integrals of vector fields.

Stokes’ theorem. Let a 1-form on S come from α = Pdx +Qdy +Rdz on ambient R3. Applying wedge products on

α (HW14),

∫
S

dα = ∮
∂S

α Ô⇒ ∫
S
((∇× F ) ⋅ n̂) dA = ∮

∂S
(F ⋅ T ) ds.

(∇× F is just the curl of F .)

Divergence theorem: now we consider a 2-form on M coming from α = Pd ∧ dy +Qdx ∧ dz +Rdy ∧ dz on R3. It

follows (again, from HW14) that

dα = div(F )dx ∧ dy ∧ dz

and thus

∫
M

dα = ∮
∂M

α Ô⇒ ∭
M

div(F ) dxdydz =∯
∂M
(F ⋅ n̂)dA.

*226 flashback intensifies*

End of Course
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