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1.3 If Qis bounded, what is the completion of C?(£2) in the supremum norm? Deduce that C?((2) is not a Banach

space with this norm. Treat similarly the case 2 = R™.

Solution

The completion of C?(£2) is given by the space of continuous functions on  that vanishes on 9. To
see this, on one hand any f,, € CO(Q2) has f,, =0 on 99, so if | f, = f|e = 0, f =0 on 9 too. Now it
remains to show that every element of our claimed completion space is indeed a limit of some sequence
{fu} € CO(Q).

Indeed, take any g from the completion. Define a sequence of functions { f,,} by

gn(2) = sgng(z) - max(0,[g(z)| - 1/n)

so that g,(z) and g(x) never have the opposite signs, |g,(z)| = |g(z)| — 1/n, unless |g(x)| < 1/n, in
which case we set g, (x) = 0. It is clear that ||g, — g|« < 1/n, and it’s also clear that each g, € C°(£)
since the supp g, is at least 1/n away from 09).

To see that this completion space does not equal the original C?(), consider a continuous function
h on ©Q with h(x) > 0 for all 2 € Q. Tt follows that supp h = Q ¢¢ Q (I hope this symbol doesn’t look
weird. . . it’s supposed to mean “not a compact subset of”). Therefore C2(Q) is not Banach.

The completion of CY(R™) is given by {f € Cp(R™) : f(x) — 0 as |z| - oo}. As usual, we start by
taking a sequence {f,} that converges (uniformly) to f. Then, for all € > 0 there exists N € N such
that |fm — fle < € whenever m > N. On the other hand, since f,, € C(£2), its support is bounded,
so there exists a sufficiently large k,, such that |f,,(z)| = 0 whenever |x| > k,,,. Therefore |f(z)| < €
whenever |x| > k,,,. This shows the “c” direction of our claim.

Now we show “2”, starting by taking any f in our claimed completion space. Just like above, we can
construct a sequence {f,} ¢ C2(R™) with | f, - f|e < 1/n. Once again, this completion space strictly

contains C?(9): the function g(x) := 1/|z| is nowhere zero but indeed tends to 0 whenever |z| — oo.
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1.4  There is no norm that makes C*(Q) into a Banach space. However, there are various subspaces of C*(£2)

that are Banach spaces. For example, for any sequence ¢ = {c,, },>1 define the norm

(e}

1£le=Y ol flemeay-

n=1

Show that the subspace of C*(Q) consisting of all those f with |f]. finite is a Banach space.

Proof. Let a sequence {fi}rs1 ¢ C*(Q) with finite norms be Cauchy with respect to ||+ .. By non-

degeneracy of norms, for each k, | fi|cn ) also form a Cauchy sequence. Since C™ (Q) is complete (in fact
separable, p.17) for finite n, f — f in C™(Q). It remains to show that f; — f with respect to |- . and

that this norm is finite.

Indeed,
oo J
[ fe = fle= ;Cnﬂfk ~flen@) = jlgrglogcn | fe = Flengy =0
-0
and

[fle <If = Felle + [ frlle <€+ [fle < co.
——

<oo

Therefore both claims fi - f and | f]|. < oo have been proven. Indeed introducing {c,} is a “remedy”. O

1.5 Show that C™7(9Q) is Banach.

Proof. Let {f,} be a Cauchy sequence in C"(Q). It follows that the sequence is uniformly bounded; in
particular, the “Hélder ratio with exponent 4 of the sequence is bounded, say by M. Observe that this

sequence is equicontinuous. Indeed, given € > 0, letting 6 > 0 be small enough such that M7 < e suggests

that for all n and all x,y € Q with |z - y| <6,
D% fu(@) = D fu(y)| « Mz —y[" < M67 <e.

Therefore, by Arzela-Ascoli there exists a subsequence of {f,} that converges (uniformly) to some f €

C°(Q). Notice that we can argue analogously and show D f,, — some f, € C°(Q2) when |a| <.

We first show that D f = f,. Indeed, inductively, if f, (z) - f(z) uniformly, differentiating
B fu@) = )+ 3 (e (#) = (@) = 1)
with respect to any |a| =1 gives
JLHOIO D f,(z) = D* f(z) uniformly, i.e., D*f,, - D f uniformly.

Now it remains to show f € C™7(Q) and that f,, - f in C™7(2). To shown the Hélder condition, since
D¢ f, - D®f uniformly, for some sufficiently large N,

Doz ~ [e% ~ |m_y|"{ ~
|D*fn(2)-D f(x)|<Tforaller.
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Then, using the “splitting into three parts” trick, for all =,y € €,

[Df () = D*f(y)| < |D f () = D* [ ()| + [ D [ () = D* fn (9)| + D" fn (y) = D ()]

— |7 —_ ol
Slx yl +M|$_y|»y+laf yl
2 2

=1+ Mz -y|",
—

<oo

and the claim follows. To see that f,, = f in C"7(Q), notice that, for any =,y € Q,

(D% fu(x) = D% fu(y)) = (DS (2) = D*f(y)) | crr
<limsup [(D fn(2) = D frn(2)) = (D fu(y) = D fin (y))|

m—oo

<Clz -y

where C is the “Holder constant” of D®f, — D® f,,, or alternatively | fn = fmlcr~ = | fn = fi|cr.” Since
{fn} is Cauchy, this constant must converge to 0 as m,n — oo. Therefore f, — f and we are done. O

1.6 Show that if Q is convex and bounded, then any C*(Q) function is Lipschitz.

Proof. By assumption, if f € C1(Q) then its derivative is bounded, i.e., |Df(x)| < M uniformly for some
M. Pick x,y € Q. Since Q is convex, y+ (1 - \)(x —y) € Q for all A €[0,1]. Therefore we can use the trick

1)1 =| [} Dt M- (o) |
chain rule

folDf(y+5\(y—x) d\

< |z -yl

<Lz -yl
and the claim follows. ]

n
1
1.8 Prove the generalized Hélder inequality: if Z — =1 and f; € LP*() then the product f; ... f, € L*(R2), with

i=1 Pi

L17@) - fal@ e < Uil faln

Proof. The base case n = 2 is already given by Holder inequality. For the inductive step, assume the
inequality holds for any k£ numbers. Now let p1,...,pr+1 be given with sum of reciprocal 1. If we define p

to be such that 1/p = 1/pg + 1/pk+1, then 1 = p/pg + p/pr+1 and applying the normal Holder inequality gives

(H)
| fifunlLo = 152 feaa o < 1SN onsn | FP onsare = 1l o | fosa o

k-1
1
$0 | fifrs1lle < | felzew | frs1 | orsr . Using our induction hypothesis with » — + = =1,
i=1Pi P

1@ fea@lde < Ufilgr e lones | fifen o
<Afuber o Wfeerl o Vel oo | fion oo

which finishes the proof. O
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1.9 Use Hélder’s inequality to obtain the LP interpolation inequality,

lu] e < HU\|%(;“‘P)/F(’"“1) HuHz(Tp—q)/q(r—q)7

where g <p<r and ue L"(Q).

Proof. Notice that "7P P79 g follows that

r—q r—gq
r-p
p=r=(r-p)=r-(r-q) —
:q-r_p+r—r-r_p
r—q r—q
Ot S ek
rT—q r—q

Therefore
|ulP = (|U|L1)(T—P)/(T—Q) (|u|r)(p—q)/(r—q)'

Then by Holder inequality we have

~ ~ ~ \(r=p)/(r=9) o\
lult, = [ @) a < [ ju@ da) (flu@r o)

qL(qr—p)/(r—Q) Hu”r TP—Q)/(T"—Q).

= [u] L

Taking p*® root of both sides gives us the LP interpolation inequality.
1.10 Show that given s € S(2), pe[1,00), and € > 0, there exists an f € C2(2) such that

Hf_SHLp < €.

Proof. Assume 2 c R™. By definition s € S(€) is of form
s(z) = Y. ¢;x[1;](x) where I; = [[[a;,b;], i.e., boxes in R™.
j=1 k=1
(7 is the index of the component in R™.) or each [a;, b;], consider the following approximation by g,. The

diagram on the right is an illustration with [a,b] = [0,1]:

gn(xz)
1 T
n(x; —a;), x;€[a;,a;+1/n], /// \\\
/ \
gn(wi) =4 1, x; € (a; + 1/n,b; = 1/n), 0 / \\\
) \
£
n(b; —x;) @ € [bj —1/n,b;]. ; ; ‘
0.5 1

It follows that as n — oo, g,(z;) — x[as, b;], and so
fn = Hcign(xi) - H cix[1i](z) in LP(Q) if p < oo,
i=1 =1

We just need to pick n large enough such that | f, - s|r» < €. It’s very easy to verify that f, € C2(): its
m

compact support is simply H[ai, b;]. Then the claim follows. O

i=1
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1.15 Show that ¢%(T") is not separable if I' is uncountable, where ¢?(T") consists of real-valued functions on I' with

D IF(P < o0

el

and the inner product is defined by
| figlezary = 20 F(N)g().

~el’

Proof. Assume I' is uncountable. Consider the uncountable family of “sequences”
{e(i)}ier c I" defined by egi) = 5.

It follows that for all distinct i, € T, [[e(?) — e(j)Hp(p) = /2. If ' admits a countable dense subset, then
for all B(e™,/2/2), some element from that dense subset must lie within. Then some element in this
countable dense subset must be simultaneously in at least two of the open balls. But the open balls are

disjoint! Therefore I' cannot be separable. 0



