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1.3 If Ω is bounded, what is the completion of C0
c (Ω) in the supremum norm? Deduce that C0

c (Ω) is not a Banach

space with this norm. Treat similarly the case Ω = Rm.

Solution

The completion of C0
c (Ω) is given by the space of continuous functions on Ω that vanishes on ∂Ω. To

see this, on one hand any fn ∈ C0
c (Ω) has fn ≡ 0 on ∂Ω, so if ∥fn − f∥∞ → 0, f ≡ 0 on ∂Ω too. Now it

remains to show that every element of our claimed completion space is indeed a limit of some sequence

{fn} ⊂ C0
c (Ω).

Indeed, take any g from the completion. Define a sequence of functions {fn} by

gn(x) ∶= sgn g(x) ⋅max(0, ∣g(x)∣ − 1/n)

so that gn(x) and g(x) never have the opposite signs, ∣gn(x)∣ ≡ ∣g(x)∣ − 1/n, unless ∣g(x)∣ < 1/n, in
which case we set gn(x) = 0. It is clear that ∥gn − g∥∞ ⩽ 1/n, and it’s also clear that each gn ∈ C0

c (Ω)
since the supp gn is at least 1/n away from ∂Ω.

To see that this completion space does not equal the original C0
c (Ω), consider a continuous function

h on Ω with h(x) > 0 for all x ∈ Ω. It follows that supp h = Ω ⊄⊄ Ω (I hope this symbol doesn’t look

weird. . . it’s supposed to mean “not a compact subset of”). Therefore C0
c (Ω) is not Banach.

The completion of C0
c (Rm) is given by {f ∈ C0

b (Rm) ∶ f(x) → 0 as ∣x∣ → ∞}. As usual, we start by

taking a sequence {fn} that converges (uniformly) to f . Then, for all ε > 0 there exists N ∈ N such

that ∥fm − f∥∞ < ε whenever m > N . On the other hand, since fm ∈ C0
c (Ω), its support is bounded,

so there exists a sufficiently large km such that ∣fm(x)∣ ≡ 0 whenever ∣x∣ > km. Therefore ∣f(x)∣ < ε
whenever ∣x∣ > km. This shows the “⊂” direction of our claim.

Now we show “⊃”, starting by taking any f in our claimed completion space. Just like above, we can

construct a sequence {fn} ⊂ C0
c (Rm) with ∥fn − f∥∞ ⩽ 1/n. Once again, this completion space strictly

contains C0
c (Ω): the function g(x) ∶= 1/∣x∣ is nowhere zero but indeed tends to 0 whenever ∣x∣ → ∞.
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1.4 There is no norm that makes C∞(Ω) into a Banach space. However, there are various subspaces of C∞(Ω)
that are Banach spaces. For example, for any sequence c = {cn}n⩾1 define the norm

∥f∥c ∶=
∞

∑
n=1

cn∥f∥Cn(Ω).

Show that the subspace of C∞(Ω) consisting of all those f with ∥f∥c finite is a Banach space.

Proof. Let a sequence {fk}k⩾1 ⊂ C∞(Ω) with finite norms be Cauchy with respect to ∥ ⋅ ∥c. By non-

degeneracy of norms, for each k, ∥fk∥Cn(Ω) also form a Cauchy sequence. Since Cn(Ω) is complete (in fact

separable, p.17) for finite n, fk → f in Cn(Ω). It remains to show that fk → f with respect to ∥ ⋅ ∥c and

that this norm is finite.

Indeed,

∥fk − f∥c =
∞

∑
n=1

cn∥fk − f∥Cn(Ω) = lim
j→∞

j

∑
n=1

cn ∥fk − f∥Cn(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

→ 0,

and

∥f∥c ⩽ ∥f − fk∥c + ∥fk∥c < ε + ∥f∥c
±
<∞

< ∞.

Therefore both claims fk → f and ∥f∥c < ∞ have been proven. Indeed introducing {cn} is a “remedy”.

1.5 Show that Cr,γ(Ω) is Banach.

Proof. Let {fn} be a Cauchy sequence in Cr,γ(Ω). It follows that the sequence is uniformly bounded; in

particular, the “Hölder ratio with exponent γ” of the sequence is bounded, say by M . Observe that this

sequence is equicontinuous. Indeed, given ε > 0, letting δ > 0 be small enough such that Mδγ < ε suggests
that for all n and all x, y ∈ Ω with ∣x − y∣ < δ,

∣Dαfn(x) −Dαfn(y)∣ ⩽M ∣x − y∣γ <Mδγ < ε.

Therefore, by Arzelà-Ascoli there exists a subsequence of {fn} that converges (uniformly) to some f ∈
C0(Ω). Notice that we can argue analogously and show Dαfn → some fα ∈ C0(Ω) when ∣α∣ ⩽ r.

We first show that Dαf = fα. Indeed, inductively, if fn(x) → f(x) uniformly, differentiating

lim
n→∞

fn(x) = f1(x) +
∞

∑
k=1

(fk+1(x) − fk(x)) = f(x)

with respect to any ∣α∣ = 1 gives

lim
n→∞

Dαfn(x) =Dαf(x) uniformly, i.e., Dαfn →Dαf uniformly.

Now it remains to show f ∈ Cr,γ(Ω) and that fn → f in Cr,γ(Ω). To shown the Hölder condition, since

Dαfn →Dαf uniformly, for some sufficiently large N ,

∣DαfN(x̃) −Dαf(x̃)∣ < ∣x − y∣γ
2

for all x̃ ∈ Ω.

2



MATH 490x Chapter 1 Exercises YQL

Then, using the “splitting into three parts” trick, for all x, y ∈ Ω,

∣Dαf(x) −Dαf(y)∣ ⩽ ∣Dαf(x) −DαfN(x)∣ + ∣DαfN(x) −DαfN(y)∣ + ∣DαfN(y) −Dαf(y)∣

⩽ ∣x − y∣γ
2

+M ∣x − y∣γ + ∣x − y∣γ
2

= 1 +M
´¹¹¹¹¹¸¹¹¹¹¶
<∞

∣x − y∣γ ,

and the claim follows. To see that fn → f in Cr,γ(Ω), notice that, for any x, y ∈ Ω,

∥(Dαfn(x) −Dαfn(y)) − (Dαf(x) −Dαf(y))∥Cr,γ

⩽ lim sup
m→∞

∥(Dαfn(x) −Dαfm(x)) − (Dαfn(y) −Dαfm(y))∥

⩽ C ∣x − y∣γ

where C is the “Hölder constant“ of Dαfn −Dαfm, or alternatively ∥fn − fm∥Cr,γ − ∥fn − fm∥Cr .” Since

{fn} is Cauchy, this constant must converge to 0 as m,n→∞. Therefore fn → f and we are done.

1.6 Show that if Ω is convex and bounded, then any C1(Ω) function is Lipschitz.

Proof. By assumption, if f ∈ C1(Ω) then its derivative is bounded, i.e., ∣Df(x)∣ <M uniformly for some

M . Pick x, y ∈ Ω. Since Ω is convex, y + (1 − λ)(x − y) ∈ Ω for all λ ∈ [0,1]. Therefore we can use the trick

f(x) − f(y) = ∣∫
1

0
Df(y + λ̃(x − y)) (x − y)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
chain rule

dλ̃ ∣

⩽ ∣∫
1

0
Df(y + λ̃(y − x) dλ̃ ∣∣x − y∣

< L∣x − y∣

and the claim follows.

1.8 Prove the generalized Hölder inequality: if
n

∑
i=1

1

pi
= 1 and fi ∈ Lpk(Ω) then the product f1 . . . fn ∈ L1(Ω), with

∫
Ω
∣f1(x) . . . fn(x)∣ dx ⩽ ∥f1∥Lp1 . . . ∥fn∥Lpn .

Proof. The base case n = 2 is already given by Hölder inequality. For the inductive step, assume the

inequality holds for any k numbers. Now let p1, . . . , pk+1 be given with sum of reciprocal 1. If we define p

to be such that 1/p = 1/pk +1/pk+1, then 1 = p/pk +p/pk+1 and applying the normal Hölder inequality gives

∥fkfk+1∥pLp = ∥fpkf
p
k+1∥L1

(H)
⩽ ∥fp∥Lpk/p∥fp∥Lpk+1/p = ∥fk∥pLpk ∥fk+1∥pLpk+1 ,

so ∥fkfk+1∥Lp ⩽ ∥fk∥Lpk ∥fk+1∥Lpk+1 . Using our induction hypothesis with
k−1

∑
i=1

1

pi
+ 1

p
= 1,

∫
Ω
∣f1(x) . . . fk+1(x)∣dx ⩽ ∥f1∥L1 . . . ∥fk−1∥Lpk−1 ∥fkfk+1∥Lp

⩽ ∥f1∥L1 . . . ∥fk−1∥Lpk−1 ∥fk∥Lpk ∥fk+1∥Lpk+1 ,

which finishes the proof.
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1.9 Use Hölder’s inequality to obtain the Lp interpolation inequality,

∥u∥Lp ⩽ ∥u∥q(r−p)/p(r−q)Lq ∥u∥r(p−q)/q(r−q)Lr ,

where q < p < r and u ∈ Lr(Ω).

Proof. Notice that
r − p
r − q +

p − q
r − q = 1. It follows that

p = r − (r − p) = r − (r − q)r − p
r − q

= q ⋅ r − p
r − q + r − r ⋅

r − p
r − q

= q ⋅ r − p
r − q + r ⋅

p − q
r − q ,

Therefore

∣u∣p = (∣u∣q)(r−p)/(r−q)(∣u∣r)(p−q)/(r−q).

Then by Hölder inequality we have

∥u∥pLp = ∫
Ω
∣u(x̃)∣p dx̃ ⩽ (∫

Ω
∣u(x̃)∣q dx̃)

(r−p)/(r−q)

(∫
Ω
∣u(x̃)∣r dx̃)

(p−q)/(r−q)

= ∥u∥q(r−p)/(r−q)Lq ∥u∥r(p−q)/(r−q)Lr .

Taking pth root of both sides gives us the Lp interpolation inequality.

1.10 Show that given s ∈ S(Ω), p ∈ [1,∞), and ε > 0, there exists an f ∈ C0
c (Ω) such that

∥f − s∥Lp < ε.
Proof. Assume Ω ⊂ Rm. By definition s ∈ S(Ω) is of form

s(x) =
n

∑
j=1

cjχ[Ij](x) where Ij =
m

∏
k=1

[ai, bi], i.e., boxes in Rm.

(i is the index of the component in Rm.) or each [ai, bi], consider the following approximation by gn. The

diagram on the right is an illustration with [a, b] = [0,1]:

gn(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n(xi − ai), xi ∈ [ai, ai + 1/n],

1, xi ∈ (ai + 1/n, bi − 1/n),

n(bi − xi) xi ∈ [bi − 1/n, bi].
0.5 1

0

1

xi

gn(xi)

It follows that as n→∞, gn(xi) → χ[ai, bi], and so

fn ∶=
m

∏
i=1

cign(xi) →
n

∏
i=1

ciχ[Ii](x) in Lp(Ω) if p < ∞.

We just need to pick n large enough such that ∥fn − s∥Lp < ε. It’s very easy to verify that fn ∈ C0
c (Ω): its

compact support is simply
m

∏
i=1

[ai, bi]. Then the claim follows.
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1.15 Show that `2(Γ) is not separable if Γ is uncountable, where `2(Γ) consists of real-valued functions on Γ with

∑
γ∈Γ

∣f(γ)∣2 < ∞

and the inner product is defined by

∥f, g∥`2(Γ) ∶= ∑
γ∈Γ

f(γ)g(γ).

Proof. Assume Γ is uncountable. Consider the uncountable family of “sequences”

{e(i)}i∈Γ ⊂ Γ defined by e(i)j ∶= δij .

It follows that for all distinct i, j ∈ Γ, ∥e(i) − e(j)∥`2(Γ) =
√

2. If Γ admits a countable dense subset, then

for all B(e(i),
√

2/2), some element from that dense subset must lie within. Then some element in this

countable dense subset must be simultaneously in at least two of the open balls. But the open balls are

disjoint! Therefore Γ cannot be separable.
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