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2.1 Show that the contraction mapping theorem remains true if the assumption that h is a contraction is replaced
by that hn is a contraction for n > 1.

Proof. If hn is a contraction, then by contraction mapping theorem there exists a fixed point x ∈ X

satisfying hn(x) = x. Applying h to both sides, we have

h(hn(x)) = h(x) Ô⇒ hn(h(x)) = h(x),

and so h(x) is also a fixed point of hn. By uniqueness h(x) = x, i.e., x is a fixed point for h.

2.2 Show that one cannot replace the condition of contraction mapping theorem with

∥h(x) − h(y)∥ < ∥x − y∥

unless X is compact.

Proof. First, as an counterexample, we present a function f ∶ R → R whose derivative < 1 everywhere.
The function is constructed based on the Signoid function s(x) = 1/(1+ e−x), a strictly increasing function
R→ (0,1). Taking the antiderivative of 1 − s(x) we have

f(x) = ∫ 1 − 1

1 + e−x̃
dx̃ = x − ln(xx + 1) +C.

Setting C = 0 we indeed have a function satisfying ∥f(x) − f(y)∥ < ∥x − y∥ but has no fixed point.

Now that a counterexample for noncompact X has been provided, it remains to show the claim still holds
if X is compact. Suppose h does not admit a fixed point, then ∥h(x)−x∥ > 0 for all x ∈X. Since h and idX

are both continuous, so is the mapping g(x) ∶ x↦ ∥h(x)− x∥. Since X is compact, g attains its minimum,
say ϵ > 0, so there exists x0 satisfying ∥h(x0) − x0∥ = ϵ. But then

∥h(h(x0)) − h(x0)∥ < ∥h(x0) − x0∥ = ϵ,

contradicting the minimality of g(x0). Hence h must have a fixed point. Uniqueness follows from the same
argument given in the standard theorem: if x, y are both fixed points then

∥h(x) − h(y)∥ = ∥x − y∥ < ∥x − y∥ ⇐⇒ x = y.

2.3 If X is compact, use Ex.1.2 to show that one can find a countable set {xi} and an increasing sequence of
integers {Ni} such that

∣x − xi∣ ⩽ 2−n for some 1 ⩽ i ⩽ Nn.

Proof. By the existence of finite ϵ-nets, given 2−n there exists a finite set x1
1, x

2
1, . . . , x

M1

1 that approximates
any x ∈ X with a distance < 2−n. Taking the union of all such points (while letting n vary), we obtain a
countable set

{x1
1, . . . , x

M1

1 , x1
2, . . . , x

M2

2 , . . .}

that satisfies the problem’s requirement, with Nn =M1 + ⋅ ⋅ ⋅ +Mn.

2.4 Assuming for simplicity that f is globally bounded, use the Arzelá-Ascoli theorem to show that even if the
solutions of dx/dt = f(x) with x(0) = x0 are not unique, the set of all possible {x(τ)},

Xτ = {y ∶ there is a solution x(t) with x(τ) = y}

is closed.
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Proof. Suppose we have a sequence {yn} with xn(τ) = yn that converge to some ỹ (xn’s are assumed to
have compact domain [0, τ]). We want to show that there exists some solution x̃ (of f) such that x̃(τ) = ỹ.
Since f is globally bounded, we know

xn(t) = xn(0) + ∫
t

0
f(xn(s)) ds Ô⇒ ∣xn(t)∣ ⩽ ∥x0∥ + t∥f∥∞ ⩽ ∥x0∥ + τ∥f∥∞

Ô⇒ sup
t∈[0,τ]

∣xn(t)∣ is uniformly bounded for all n.

On the other hand, xn’s are also uniformly Lipschitz (and thus equicontinuous) with Lipschitz constant
∥f∥∞. Therefore Arzelá-Ascoli applies and some subsequence {xni}of {xn} converges uniformly to some
x∗. Then, applying the uniform convergence {xni}→ x∗ to

xni
(t) = x0 + ∫

t

0
f(xni

(s)) ds,

we have
x∗(t) = x0 + ∫

t

0
f(x(s)) ds,

so indeed x∗ is a solution to the initial condition given by the problem and x∗(τ) = ỹ as desired.

2.5 Suppose that
1

2

d

dt
∣x∣2 ⩽ C(t)∣x∣,

where C(t) is continuous. Show that
d

dt+
∣x∣ ⩽ C(t).

Proof. The claim immediately follows from chain rule if ∣x(t)∣ ≠ 0. Now assume that for some t0 we have
∣x(t0)∣ = 0. Notice that showing the desired inequality is equivalent to showing

d

dt+
∣x(t0)∣ ⩽ C(t0) + ϵ for all ϵ > 0.

Now let ϵ > 0 be given. By the continuity of C(t), there exists δ > 0 such that C(t) ⩽ C(t0) + ϵ for all
t ∈ [t0, t0 + ϵ). Then,

1

2

d

dt
∣x(t)∣2 ⩽ (C(t0) + ϵ)∣x∣.

Stuck at here. I tried to apply the differential inequality lemma (2.7) but didn’t find any use of it. /◻

2.6 Prove that if a(t) is increasing and x(t) ⩾ 0 satisfies

x(t) ⩽ a(t) + ∫
t

0
b(t̃)x(t̃) dt̃

then

x(t) ⩽ a(t) exp(∫
t

0
b(s) ds) .

Hint: consider the new variable y(t) = ∫
t

0
b(s)x(s) ds and integrate the equation for dy/dt.

Proof. Define y(t) according to the hint. Then x(t) ⩽ a(t) + y(t) and

dy

dt
= b(t)x(t) ⩽ b(t) [a(t) + y(t)] .

Leaving the term containing a(t) on the RHS, we obtain dy/dt − b(t)y(t) ⩽ a(t)b(t). Since exp is always
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positive, we also have

[dy
dt
− b(t)y(t)] exp(−∫

t

0
b(s) ds) ⩽ a(t)b(t) exp(−∫

t

0
b(s) ds) . (∆)

Notice that the LHS is simply the derivative of y(t) exp(−∫ b(s)).
It suffices to show that, for all t∗ defined for x,

x(t∗)a(t∗) exp(∫
t∗

0
b(s) ds) .

Pick an arbitrary t∗ and fix it. For all t ∈ [0, t∗], the monotonicity of a(t) implies that the RHS of (∆) is

further bounded by a(T )b(t∗) exp(−∫
t

0
b(s)). Then, integrating both sides from 0 to t∗ (with respect to

t) gives

y(t∗) exp(−∫
t∗

0
b(s) ds) ⩽ a(t∗)∫

t∗

0
[b(t̃) exp(−∫

t̃

0
b(s) ds)] dt̃.

Notice that
−∫

t̃

0
b(s) ds + ∫

t∗

0
b(s) ds = ∫

t∗

t̃
b(s) ds,

so

y(t∗) ⩽ a(t∗)∫
t∗

0
[b(t̃) exp(∫

t∗

t̃
b(s) ds)] dt̃

⩽ a(t∗) [exp(∫
t∗

0
b(s) ds) − exp(0)]

and the claim follows from the given inequality x(t∗) ⩽ a(t∗) + y(t∗).

2.7 Suppose that f is a globally Lipschitz function with constant L and that g(x) is a continuous function with
∥f − g∥∞ <∞. If x(t) is the solution of

dx

dt
= f(x), x(0) = x0

and y(t) is any one of the solutions of

dy

dt
= g(y), y(0) = x0,

show, using lemmas 2.8 and 2.9, that
∣x(t) − y(t)∣ ⩽ ∥f − g∥∞

LeLt
.

Proof. Define z(t) ∶= x(t) − y(t) and thus dz/dt = f(x) − g(y). Lemma 2.9 then gives

d

dt+
∣z∣ ⩽ ∣f(x) − g(y)∣ ⩽ ∣f(x) − f(y)∣ + ∣f(y) − g(y)∣

⩽ L∣x − y∣ + ∥f − g∥∞ = L∣z∣ + ∥f − g∥∞.

Since x(0) = y(0), by the remark of lemma 2.9 (or directly applying Gronwall’s inequality, 2.8), we obtain

∣z(t)∣ ⩽ (∣z(0)∣ + ∥f − g∥∞
L

) eLt Ô⇒ ∣x(t) − y(t)∣ ⩽ ∥f − g∥∞
L

eLt.
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