MATH 490x Sp2021 Robinson, Infinite-Dimensional Dynamical Systems Chapter 2 Exercises - YQL

2.1  Show that the contraction mapping theorem remains true if the assumption that h is a contraction is replaced

by that A™ is a contraction for n > 1.

Proof. If h™ is a contraction, then by contraction mapping theorem there exists a fixed point x € X

satisfying h™(x) = z. Applying h to both sides, we have
h(h™(x)) = h(z) = h"(h(z)) = h(x),

and so h(x) is also a fixed point of h"™. By uniqueness h(z) =z, i.e., z is a fixed point for h. O

2.2 Show that one cannot replace the condition of contraction mapping theorem with

Ih(2) = M(y)| <z -y
unless X is compact.

Proof. First, as an counterexample, we present a function f : R — R whose derivative < 1 everywhere.
The function is constructed based on the Signoid function s(x) =1/(1+e™*), a strictly increasing function

R — (0,1). Taking the antiderivative of 1 — s(x) we have

fy= [ 1- L iz +1)+C.

1+e?
Setting C = 0 we indeed have a function satisfying | f(x) - f(y)|| < |= — y| but has no fixed point.

Now that a counterexample for noncompact X has been provided, it remains to show the claim still holds
if X is compact. Suppose h does not admit a fixed point, then |[h(x)-x| > 0 for all x € X. Since h and idx
are both continuous, so is the mapping g(x) :  ~ |h(x) - z|. Since X is compact, g attains its minimum,

say € > 0, so there exists g satisfying |h(xzg) — zo|| = €. But then
Ih(h(x0)) = h(zo) | < |A(x0) —zo| =€,

contradicting the minimality of g(xg). Hence h must have a fixed point. Uniqueness follows from the same

argument given in the standard theorem: if z,y are both fixed points then

[h(z) =hW)] = [z -yl < |z -y| —= z=y. O
2.3 If X is compact, use Ex.1.2 to show that one can find a countable set {z;} and an increasing sequence of
integers {NN;} such that
|z —x;| <27 for some 1 <i < N,.
Proof. By the existence of finite e-nets, given 27" there exists a finite set x1,27,..., a:iwl that approximates
any x € X with a distance < 27". Taking the union of all such points (while letting n vary), we obtain a

countable set

1 M 1 M
{zg, .2 2,252, )
that satisfies the problem’s requirement, with N, = My +---+ M,,. O

2.4 Assuming for simplicity that f is globally bounded, use the Arzela-Ascoli theorem to show that even if the
solutions of dz/dt = f(z) with 2(0) = z¢ are not unique, the set of all possible {z(7)},

X, ={y: there is a solution z(¢) with z(7) =y}

is closed.
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Proof. Suppose we have a sequence {y,} with z,(7) = y, that converge to some § (z,,’s are assumed to
have compact domain [0, 7]). We want to show that there exists some solution & (of f) such that Z(7) = g.

Since f is globally bounded, we know

xn(t)=xn(0)+f0 f(an(s)) ds = [zn(D)] < [zo] + 1] flloo < o]l + 7 f]o

= sup |z,(t)| is uniformly bounded for all n.
te[0,7]

On the other hand, z,,’s are also uniformly Lipschitz (and thus equicontinuous) with Lipschitz constant
[ fleo- Therefore Arzeld-Ascoli applies and some subsequence {z, fof {z,} converges uniformly to some

x*. Then, applying the uniform convergence {x,,} - z* to

t
on(t) =20+ [ f(n,(5)) ds,
0
we have
t
2 () =m0+ [ fla(s)) ds,
0
so indeed z* is a solution to the initial condition given by the problem and z*(7) = § as desired. O
2.5 Suppose that

1d
§&|$|2 <C ()],

where C'(t) is continuous. Show that

d
- <C(t).
5 lal<c®

Proof. The claim immediately follows from chain rule if |z(¢)| # 0. Now assume that for some ¢y we have

|z(t0)| = 0. Notice that showing the desired inequality is equivalent to showing
d
— |a(to)| < C(tp) + € for all € > 0.
dt +

Now let € > 0 be given. By the continuity of C(t), there exists § > 0 such that C(t) < C(tg) + € for all
te [to,to + 6). Then,

a0 < (Cto) + el

Stuck at here. I tried to apply the differential inequality lemma (2.7) but didn’t find any use of it. @

2.6  Prove that if a(t) is increasing and x(¢) > 0 satisfies
2(1) <a(t) + fo b()a (B di
then
z(t) < a(t) exp (/Ot b(s) ds) .
Hint: consider the new variable y(t) = fot b(s)x(s) ds and integrate the equation for dy/dt.

Proof. Define y(t) according to the hint. Then z(t) < a(t) + y(t) and

= beyr(t) <o) [a(r) + y(0)].

Leaving the term containing a(¢) on the RHS, we obtain dy/dt — b(t)y(t) < a(t)b(t). Since exp is always
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positive, we also have

[i?z (t)y(t)]exp( /:b(s) ds)sa(t)b(t) exp(—fotb(s) dS)- (&)

Notice that the LHS is simply the derivative of y(t) exp(—fb(s)).
It suffices to show that, for all ¢* defined for =z,

z(t")a(t") exp ([)t

Pick an arbitrary t* and fix it. For all ¢ € [0,¢*], the monotonicity of a(¢) implies that the RHS of (A) is

*

b(s) ds).

t
further bounded by a(T)b(t*) exp(—f b(s)). Then, integrating both sides from 0 to t* (with respect to
0

y(t*) exp (— /Ot* b(s) ds) Sa(t”)/;tﬂP [b(f) exp (—fofb(s) ds)] dt
—fogb(s) ds + fot* b(s) ds = [{t* b(s) ds,

t) gives

Notice that

SO
t* B t*
a(t*)/ [b(t) exp([ b(s) ds)] dt
0 t
t*
a(t”) [exp (/ b(s) ds) - eXp(O)]
0

and the claim follows from the given inequality z(t*) < a(t*) + y(t*). O

2.7 Suppose that f is a globally Lipschitz function with constant L and that g(x) is a continuous function with
If = gleo < o0. If x(t) is the solution of

dz
L f@). 0=
and y(t) is any one of the solutions of

d
9w, ()=,

show, using lemmas 2.8 and 2.9, that

(1) - ()| < 0=

Proof. Define z(t) := z(t) - y(¢) and thus dz/dt = f(z) - g(y). Lemma 2.9 then gives

d

e |zl <|f(z) =g <|f () = FW)I+1f(v) - 9(y)l

<Lz =yl + 1f = gloo = LIzl + |f = glloo-

Since 2(0) = y(0), by the remark of lemma 2.9 (or directly applying Gronwall’s inequality, 2.8), we obtain

|z(t)|<(|z(o)| i 9|°°) — (1) -y (D) < Mu .



