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Problem 3.2

Show that the integration operator

I[f](x) = ∫
x

0
f(s) ds, x ∈ [0,1]

is a bounded operator from C0([0,1]) into itself. Show that it is also a bounded operator acting on C0([0,1])
as a subset of L2(0,1) into L2(0,1).

Proof. For the first statement, the continuity of I[f](x) is guaranteed by FTC. Furthermore, since f ∈ C0([0,1])
it is bounded, say absolutely by M . Then

∥I[f]∥∞ ⩽ ∫
1

0
∥f∥∞ dx = ∥f∥∞.

For the second argument (L2), if f ∈ L2 then by Cauchy-Schwarz

∥I[f]∥22 = ∫
1

0
∣I[f](x)∣2 dx = ∫

1

0
(∫

x

0
f(s) ds)

2

dx

⩽ ∫
1

0
(∫

x

0
1 ds)(∫

x

0
∣f(t)∣2 dt) dx

= x∫
1

0
∥f∥22 dx ⩽ ∥f∥22.

Problem 3.5

Suppose that {φj(x)} is an orthonormal basis for L2(Ω). Show that {φi(x)φj(y)} is an orthonormal basis
for L2(Ω ×Ω) and hence that, if k ∈ L2(Ω ×Ω), it can be written in the form

∥k∥2L2(Ω×Ω) = ∫
Ω×Ω
∣k(x, y)∣2 dx dy =

∞
∑
i,j=1
∣ki,j ∣2

where
ki,j = ∫

Ω×Ω
k(x, y)φi(x)φj(y) dx dy.

Proof. First notice that {φi(x)φj(y)} indeed form an orthonormal subset of L2(Ω ×Ω):

∫
Ω×Ω
[φi1(x)φj1(y)][φi2(x)φj2(y)] dx dy = ∫

Ω
φi1(x)φi2(x) dx∫

Ω
φj1(y)φj2(y) dy

which simply evaluates to δi1,i2 ⋅δj1,j2 since {φi} forms an orthonormal basis of Ω. Notice that if k(x, y) ∈ L2(Ω×Ω)
then k(x, ⋅) ∈ L2(Ω) (i.e., first fix some y and treat k as a function of x). Therefore, fixing any y ∈ Ω and treating
k as a function of x only, we can expand k(x, y) by

k(x, y) =
∞
∑
i=1

ui(y)φi(x) where ui(y) = ∫
Ω
k(x, y)φi(x) dx. (1)
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Our next goal is to expand ui(y) using {φj}. Indeed, this is well-defined because

∥ui∥22 = ∫
Ω
∣ui(y)∣2 dy = ∫

Ω
(∫

Ω
k(x, y)φi(x) dx)

2

dy

⩽ ∫
Ω
(∫

Ω
k(x, y)2 dx)(∫

Ω
φi(x)2 dx) dy

= ∫
Ω×Ω
∣k(x, y)∣2 dx dy = ∥k∥22

and thus ui(y) ∈ L2(Ω). Therefore, it also admits an expansion

∫
Ω
k(x, y)φi(x) dx = ui(y) =

∞
∑
j=1
(∫

Ω
ui(y)φj(y) dy)φj(y). (2)

Substituting (2) into (1), we get

k(x, y) =
∞
∑
i=1

ui(y)φi(x) =
∞
∑
i=1
(∫

Ω
k(x, y)φi(x) dx)φi(x)

=
∞
∑
i=1

⎡⎢⎢⎢⎣

∞
∑
j=1
(∫

Ω
ui(y)φj(y) dy)φj(y)

⎤⎥⎥⎥⎦
φi(x)

=
∞
∑
i=1

⎡⎢⎢⎢⎣

∞
∑
j=1
∫
Ω
(∫

Ω
k(x, y)φi(x) dx)φj(y) dy φj(y)

⎤⎥⎥⎥⎦
φi(x)

=
∞
∑
i,j=1
(∫

Ω×Ω
k(x, y)φi(x)φj(y) dx dy)φi(x)φj(y),

as desired.

Problem 3.6

This is a partial converse of the Hilbert-Schmidt theorem. Show that if A can be expressed in the form

Au =
∞
∑
n=1

λn(u,wn)wn

where λn → 0 and (wn,wm) = δm,n then A is compact and symmetric. [Hint: Theorem 3.10 & Lemma 3.12.]

Proof. We first define a sequence {An} by the partial sums

Anu =
n

∑
i=1

λi(u,wi)wi.

The range of An has dimension n so each An is compact by Lemma 3.12. It remains to show that An → A in
∥ ⋅ ∥op, after which the compactness of A follows from Theorem 3.10. Indeed,

∥Au −Anu∥ = ∥
∞
∑

i=n+1
λi(u,wi)wi∥ ⩽ (sup

i⩾n+1
λi) ∥

∞
∑

i=n+1
(u,wi)wi∥ ⩽ (sup

i=n+1
λi)∥u∥→ 0

as λn → 0 and sup
i⩾n+1

λi → 0. To see A is symmetric, notice that

(u,Av) = (u,
∞
∑
i=1

λi(v,wi)wi) =
∞
∑
i=1

λi(u, (v,wi)wi) =
∞
∑
i=1

λi(u,wi)(v,wi)

=
∞
∑
i=1

λi(u,wi)(wi, v) =
∞
∑
i=1

λi((u,wi)wi, v) = (Au, v).
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Problem 3.8

If k ∈ L2(Ω ×Ω) and k(x, y) = k(y, x), show that the solution of the integral equation

∫
Ω
k(x, y)u(y) dy = f(x), f ∈ L2(Ω)

is given in terms of the eigenvalues and eigenfunctions of the equation

∫
Ω
k(x, y)u(y) dy = λu(x)

by
u(x) =

∞
∑
i=1

(f, ui)
λi

ui(x).

[Hint: consider the integral operator K defined by [Ku](x) = ∫
Ω
k(x, y)u(y) dy.]

Proof. Proposition 3.13 proved that K ∶ L2(Ω) → L2(Ω) is compact and, with the assumption that k(x, y) =
k(y, x), Lemma 3.16 says K is symmetric. Therefore we may invoke the Hilbert-Schmidt Theorem: the eigen-
values {λi} of K are real and λi → 0 after relabeling. We define ui(x) to be the corresponding eigenfunction to
λi. By definition,

[Kui](x) = ∫
Ω
k(x, y)ui(y) dy = λiui(x).

The Hilbert-Schmidt Theorem also states that if f ∈ L2(Ω) then f =
∞
∑
i=1
(f, ui)ui. Therefore, the solution to

∫
Ω
k(x, y)u(y) dy = [Ku](x) = f(x) =

∞
∑
i=1
(f, ui)ui(x)

is simply given by u(x) =
∞
∑
i=1

(f, ui)
λi

ui(x): indeed,

[Ku](x) =
∞
∑
i=1

[Kui](x)(f, ui)
λi

=
∞
∑
i=1
(f, ui)ui(x) = f(x).

Problem 3.9

Show that if A is a linear operator that is bounded below, i.e., there exists k > 0 such that ∥Ax∥ ⩾ k∥x∥, then
A−1 is well-defined. Show also that if A is bounded then A−1 ∶ R(A)→D(A) is bounded.

Proof. If A is bounded below the ker(A) = {0} for if x ≠ y then ∥Ax −Ay∥ ⩾ k∥x − y∥ > 0. If A is bounded then

∥y∥Y = ∥A(A−1y)∥Y ⩾ k∥A−1y∥X Ô⇒ ∥A−1y∥ ⩽
∥y∥
k
Ô⇒ ∥A−1∥ ⩽ 1

k
.

Problem 3.10

Show that the sectorial operator defined by

A−α = 1

Γ(α) ∫
∞

0
tα−1e−At dt
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agrees with the fraction powers of A presented in Section 3.10

Aαu =
∞
∑
i=1

λα
i (u,wi)wi

when H has a basis of eigenfunctions of A.
[Hint: apply A−α to each eigenfunction and use the definition Γ(x) = ∫

∞

0
tx−1e−t dt.]

Proof. Let {wi} be the set of eigenfunctions with wi corresponding the eigenvalue ei. The matrix exponential
gives eAw = eλw and e−Atw = e−λtw. Therefore, for any eigenfunction wi,

A−αwi =
1

Γ(α) ∫
∞

0
tα−1e−At dt wi =

1

Γ(α) ∫
∞

0
tα−1e−λit dt wi.

Notice that u-substitution with u ∶= λit gives

∫
∞

0
tα−1e−λit dt = ∫

∞

0
(u/λi)α−1e−uλ−1i du = ∫

∞

0
uα−1λ−αi e−u du = λ−αi Γ(α).

Therefore
A−αwi =

1

Γ(α)
λ−αi Γ(α)wi = λ−αi wi,

i.e., λ−αi is an eigenvalue of A−α. Since wi is chosen randomly, we are able to recover all eigenvalues of A−α in
this way. Corollary 3.26 then gives a representation of A, which is exactly of form presented in Section 3.10:

A−αu =
∞
∑
i=0

λ−αi (u,wi)wi Ô⇒ Aαu =
∞
∑
i=1

λα
i (u,wi)wi.

Problem 3.11

Prove that if u is in the domain of Ak then

∥Asu∥ ⩽ ∥Aℓu∥(k−s)/(k−l)∥Aku∥(s−ℓ)/(k−ℓ)

where 0 ⩽ ℓ < s < k. While proving, use the eigenfunction expansion u =
∞
∑
i=1

ciwi and the corresponding

expression for ∥Asu∥:

∥Asu∥2 =
∞
∑
i=1

λ2s
i ∣ci∣2.

Also make use of Hölder’s inequality.

Proof. This one really reminds me of the Lp interpolation inequality (Ex.1.9). Notice that the two exponents
on the RHS add up to 1. I will try to work backwards in the proof so that each step looks more reasonable than
just some random magical trick. The main idea is to show that the square of the original LHS, i.e., ∥Asu∥2,
does not exceed that of the RHS. Notice again that (k − s)/(k − ℓ)+ (s− ℓ)/(k − ℓ) = 1: this cries out for Hölder’s
inequality for ℓp spaces. Here we need p ∶= (k − ℓ)/(k − s) and q ∶= (k − ℓ)/(s − ℓ). Then, for a, b under certain
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conditions (which we will specify later),

LHS2 = ∥Asu∥2 =
∞
∑
i=1

λ2s
i ∣ci∣2 =

∞
∑
i=1
(λ2a

i ∣ci∣2/p) (λ2b
i ∣ci∣2/q)

⩽
∞
∑
i=1
∣ (λ2a

i ∣ci∣2/p) (λ2b
i ∣ci∣2/q) ∣

⩽ (
∞
∑
i=1

λ2ap
i ∣ci∣

2p/p)
1/p ⎛
⎝

∞
∑
j=1

λ2bq
j ∣cJ ∣

2q/q⎞
⎠

1/q

= (
∞
∑
i=1

λ2ap
i ∣ci∣

2)
1/p ⎛
⎝

∞
∑
j=1

λ2bq
i ∣cj ∣

2⎞
⎠

1/q

= ∥Aapu∥2/p∥Abpu∥2/q

(want to have) ?= ∥Aℓu∥2/p ∥Aku∥2/q = RHS2.

From the “backward thinking” above, we see that there are three conditions that a and b need to satisfy:

a + b = s ap = a(k − ℓ)
k − s

= ℓ and bq = b(k − ℓ)
s − ℓ

= k

A simple substitution suggests that
a = ℓ(k − s)

k − ℓ
and b = k(s − ℓ)

k − ℓ
is a solution. Therefore the proof is valid and

∥Asu∥2 ⩽ ∥Aℓu∥2(k−s)/(k−ℓ)∥Aku∥2(s−ℓ)/(k−ℓ) Ô⇒ ∥Asu∥ ⩽ ∥Aℓu∥(k−s)/(k−ℓ)∥Aku∥(s−ℓ)/(k−ℓ).

Problem 3.12

Recall that if A is a positive symmetric operator with compact inverse, we have

e−Atu =
∞
∑
i=1

e−λit(u,wi)wi.

Using this equality, show that if x ∈D(A) then e−Atx is differentiable on [0,∞) and

d

dt
e−Atx = −Ae−Atx.

[Hint: it suffices to check differentiability at t = 0.]

Proof. Let x ∈ D(A) be given and let x ∶=
∞
∑
i=1

uiwi. We want to show d

dt
e−Atx = −Ae−Atx and, by the hint, it

suffices to check t = 0. Thus it suffices to show

lim
h↓0

(e−Ah − I)x
h

= −AIx.
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By the Hilbert-Schmidt Theorem,

(e−Ah − I)x
h

+Ax =
∞
∑
i=1

(e−λih − 1)uiwi

h
+
∞
∑
i=1

λiuiwi

=
∞
∑
i=1
[e
−λih − 1

h
+ λi]uiwi

=
∞
∑
i=1
[e
−λih − 1
λih

+ 1] λiuiwi.

Since A is positive, so are all its eigenvalues λi; also, h is positive. Therefore the cyan term is always strictly
between 0 and 1:

lim
t↓0

e−t − 1
t
= −1, lim

t→∞

e−t − 1
t
= 0, and d

dt
[e
−t − 1
t
] = e−t(et − t − 1)

t2
> 0 for all t > 0

so (e−λih − 1)/(λih) ∈ (−1,0) and the cyan term ∈ (0,1). Therefore,

XXXXXXXXXXX

∞
∑
i=n
[e
−λih − 1
λih

+ 1]λiuiwi

XXXXXXXXXXX
⩽
∞
∑
i=n

λ2
iu

2
i → 0 (∆)

because x ∈D(A) and Corollary 3.26 (in particular equation (3.20)) gives
∞
∑
i=1

λ2
i ∣ui∣2 <∞.

Let ϵ > 0 be given. It follows that there exists N ∈ N such that the LHS of (∆) is less than ϵ/2 whenever n ⩾ N .
Now fix any such n. Since lim

t↓0
(e−t − 1)/t = −1, for sufficiently small h we have

XXXXXXXXXXX

n−1
∑
i=1
[e
−λih − 1
λih

+ 1]λiuiwi

XXXXXXXXXXX
< ϵ

2
.

Therefore
lim
h↓0

(e−Ah − I)x
h

= Ax Ô⇒ d

dt
e−Atx ∣

t=0
= −Ae−Atx ∣

t=0
.
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