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Problem 3.2
Show that the integration operator
@)= [ fs) s, aef0.1]

is a bounded operator from C°([0,1]) into itself. Show that it is also a bounded operator acting on C°([0,1])
as a subset of L?(0,1) into L*(0,1).

Proof. For the first statement, the continuity of I[ f](z) is guaranteed by FTC. Furthermore, since f € C°([0,1])
it is bounded, say absolutely by M. Then

1
Voo € [ 1l d2 = | o

For the second argument (L?), if f € L? then by Cauchy-Schwarz

= [ @ ([ as)

L ras) ([ a) s

1
=2 [ 1f13 e <713, s
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Problem 3.5

Suppose that {¢;(z)} is an orthonormal basis for L2(2). Show that {¢;(z)¢;(y)} is an orthonormal basis
for L2(Q x Q) and hence that, if k€ L2(Q2 x Q), it can be written in the form

KB ey = [ R p)P dudy = 3 kil
QxQ ij=1

where
kig= [ k@ y)e@)ei(y) do dy.

Proof. First notice that {¢;(2)p;(y)} indeed form an orthonormal subset of L*(2 x Q):

[ en @en @l @en @ dady = [ o @)en@) do [ o)) dy

which simply evaluates to d;, ;,-5;, j, since {¢; } forms an orthonormal basis of . Notice that if k(z,y) € L?(Q2x2)
then k(z,-) € L?() (i.e., first fix some y and treat k as a function of ). Therefore, fixing any y € Q and treating

k as a function of x only, we can expand k(x,y) by

k() = ¥ )eu(e) where ui(y) = [ Kry)ou(e) da. 1)
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Our next goal is to expand u;(y) using {¢;}. Indeed, this is well-defined because

2= [P du= [ ([ ko) ar) ay
Sfﬂ(fﬂk(x,y)z dx) ('/;Z%(x)Q dx) d

= k >dz dy = [k]3
| Jkp)l? dz dy = [k]3

and thus u;(y) € L?(2). Therefore, it also admits an expansion

/Q k(z,y)pi(x) dz = ui(y) = g:l (fﬂ ui(y)e; (y) dy) @i (y). (2)
Substituting (2) into (1), we get
k() = S o) = 3 f et dr) o)
= 2 [g: o i) (y) dy) %(y)] pi(x)
= 2 [gj (z,y)pi(x) dw) ©i(y) dy ¢, (y)] pi(x)
:Z:Z;(f k(z,y)ei(z)e;(y) do dy)%(%)%’(yh
O

as desired.

Problem 3.6

This is a partial converse of the Hilbert-Schmidt theorem. Show that if A can be expressed in the form

Au = i An (w0, wp ) wy,

n=1

where A, > 0 and (wy,, Wy, ) = dpp,n then A is compact and symmetric. [Hint: Theorem 3.10 & Lemma 3.12.]

Proof. We first define a sequence {A,,} by the partial sums

A u= i i (u, w; )w;.

i=1
The range of A,, has dimension n so each A, is compact by Lemma 3.12. It remains to show that A, - A in

|+ |op, after which the compactness of A follows from Theorem 3.10. Indeed,

< (sup Aj)uf -0
i=n+1

[ee]
< (sup \;) H Z (u, w; )w;
2n+1 i=n+1

Jdu= Al = | 3 A
i=n+1

as A\, = 0 and sup \; - 0. To see A is symmetric, notice that
i2n+1

(u, Av) = (u,i)\i(v,wi)wi) ( , (v, w;)w 2) Z)\ (u, w;) (v, w;)

2
= Ni(u,wy) (wg,v) = OZO: ((u wl)w“) (Au,v).

'M8
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—
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Problem 3.8
If ke L2(Qx Q) and k(x,y) = k(y, ), show that the solution of the integral equation
[ @ pu) dy = 1), feL*(9)
is given in terms of the eigenvalues and eigenfunctions of the equation
k() dy = Xu(z)

by

[Hint: consider the integral operator K defined by [Ku](z) = /Q k(z,y)u(y) dy.]

Proof. Proposition 3.13 proved that K : L?(Q) — L%*(2) is compact and, with the assumption that k(z,y) =
k(y,z), Lemma 3.16 says K is symmetric. Therefore we may invoke the Hilbert-Schmidt Theorem: the eigen-
values {\;} of K are real and \; — 0 after relabeling. We define u;(z) to be the corresponding eigenfunction to
Ai. By definition,

[Ku;](z) = [Q k(z,y)u;(y) dy = Au;(z).

The Hilbert-Schmidt Theorem also states that if f € L*(Q) then f = (f,u;)u;. Therefore, the solution to
i=1

S ) dy = [Kul(@) = 1) = 320 v ()

(f7 U’l)
Ai

is simply given by u(z) =)’ u;(x): indeed,
i=1

[ (z) = i[K““)”“) =S us)us() = £(@). O

A =~
Problem 3.9

Show that if A is a linear operator that is bounded below, i.e., there exists k > 0 such that |Az| > k||z||, then

A1 is well-defined. Show also that if A is bounded then A~!: R(A) - D(A) is bounded.

Proof. If A is bounded below the ker(A) = {0} for if z #y then |Ax — Ay|| > k||x — y| > 0. If A is bounded then

O

_ _ _ _ 1
Iyl = IAGA™ )l > KAy x — 1471 <2 — a2

Problem 3.10

Show that the sectorial operator defined by

A= L f ta—le—At dt
I'(a) Jo
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agrees with the fraction powers of A presented in Section 3.10
A%y = Z A (u, w; )w;
i=1

when H has a basis of eigenfunctions of A.

[Hint: apply A™* to each eigenfunction and use the definition I'(x) = [ t" et dt.)
0

Proof. Let {w;} be the set of eigenfunctions with w; corresponding the eigenvalue e;. The matrix exponential

gives edw = e*w and e

1 0 1 e
A %w; = —— f e A qtw; = —— / o te™ Nt Q¢ ;.
I'(a) Jo I'(a) Jo

Notice that u-substitution with u := \;t gives

tw = e Mw. Therefore, for any eigenfunction w;,

f to et dt = f (u/X)* te A\t du = [ u* A e du = AT ().
0 0 0

Therefore

-

w; AT (@)w; = A “w;,

1
" I(a)
ie., A\;% is an eigenvalue of A™*. Since w; is chosen randomly, we are able to recover all eigenvalues of A™ in
this way. Corollary 3.26 then gives a representation of A, which is exactly of form presented in Section 3.10:
A=Y A (uwi)w; = A% =Y AT (u, w;)w;. O
i=1

=0

Problem 3.11

Prove that if w is in the domain of A* then

T R R

[}

where 0 < £ < s < k. While proving, use the eigenfunction expansion u = Zciwi and the corresponding
i=1
expression for |A%ul:
[eo)
s, 12 2s 2
JA%u]® = 30 X3l
i=1

Also make use of Holder’s inequality.

Proof. This one really reminds me of the LP interpolation inequality (Ex.1.9). Notice that the two exponents
on the RHS add up to 1. I will try to work backwards in the proof so that each step looks more reasonable than
just some random magical trick. The main idea is to show that the square of the original LHS, i.e., ||A%u|?,
does not exceed that of the RHS. Notice again that (k—s)/(k—¢)+ (s=£)/(k-£) = 1: this cries out for Holder’s
inequality for ¢7 spaces. Here we need p := (k-/¢)/(k-s) and ¢ := (k-¥¢)/(s-{£). Then, for a,b under certain
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conditions (which we will specify later),

LHS2 HAéu” Z)\Zs|cl _ Z ()\Za|cl|2/p) ()\2 | |2/q)

i=1

g I

< 2] (e PI) (21|
i=1

o 1/p [ o 1/q
Z)\?ap|ci|2p/10) (Z )\ibq|0J|2q/¢1)

d
i=1 j=1

o 1/p [ o 1/q
() (£

i=1 j=1

_ HA:I;JUHQ/pHAI;/»UHZ/q

(want to have) = |A‘u|*? | A u|*? = RHS?.

From the “backward thinking” above, we see that there are three conditions that a and b need to satisfy:

 — b(k -1
a+b=s ap = (L(/ ) =/ and bg = )(/ ) =k

k-s s—/

A simple substitution suggests that
L(k - s) k(s-1)
=——and b=

k-t k-0

is a solution. Therefore the proof is valid and
||A5u|\2 < HAZUH2(k—s)/(k—Z) HAkuH2(s—€)/(k—€) — HASU’H < HAZuH(k—s)/(k—é) HAku”(s—E)/(k—é). ]

Problem 3.12
Recall that if A is a positive symmetric operator with compact inverse, we have

fee]
e My = > e (u, w; )w.

Using this equality, show that if 2 € D(A) then e 'z is differentiable on [0, c0) and

d
—e My = —Ae Ay,
dt

[Hint: it suffices to check differentiability at ¢ = 0.]

>, d
Proof. Let x € D(A) be given and let x := ZuzwZ We want to show ae“‘”x = —Ae 2 and, by the hint, it
i=1

suffices to check ¢ = 0. Thus it suffices to show

—Ah _
%M - ATz
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By the Hilbert-Schmidt Theorem,

(e A - I)x

D
ﬂ + 3 M
h i=1

§[ T
Z[ )\hi ]M“wl

Since A is positive, so are all its eigenvalues A;; also, h is positive. Therefore the cyan term is always strictly

between 0 and 1:

-t _ -t _ -t _ -t t _ 4 _
lime 1:—1 hme 1:07 aundg ¢ L . (et 1)>0f01radlt>0
tHo ¢ t—oo dt t 2
so (e —1)/(\;h) € (-1,0) and the cyan term € (0,1). Therefore,
) e—)\th -1 )
[)\-h + 1] iU w; Z /\12%2 -0 (A)

because x € D(A) and Corollary 3.26 (in particular equation (3.20)) gives . A7|u;|? < co.
i=1

Let € > 0 be given. It follows that there exists N € N such that the LHS of (A) is less than €/2 whenever n > N.

Now fix any such n. Since ltil%l(e_t - 1)/t = -1, for sufficiently small h we have

P | €
1[ )\h +1 )\iuiwi < —.
Therefore T
-1
lim (e )z =Arx =— —e Ay = —Ae Ay . O
hi0 h dt =0 t=0



