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Problem 1

[MATH 580 HW1 revisited; now I feel much better than three months ago] Use Zorn’s lemma to show that
every Hilbert space has a basis. Hint: find a maximal orthonormal set.

Proof. Let H be a Hilbert space and let P denote the set of all orthonormal subsets of H. We define a partial
ordering on P by inclusion. If {Pi} is a chain where i ∈ I (some index set), i.e., Pn ⊂ Pm for n < m, then the
union of all Pi’s in this chain, i.e., S ∶=⋃

i∈I
Pi, is an upper bound for {Pi}. It follows that S is also orthonormal.

That all elements in S have norm 1 is clear. For orthogonality, suppose u, v ∈ S are not orthogonal. Then since
u, v are both contained in some Pn we get a contradiction on the orthogonality of Pn.
Now we claim that S is a basis for H. If not, H ∖ span(S) is nonempty. In particular, since span(S) is a
closed linear subspace of H, for x ∈ H ∖ span(S) we are able to orthogonally decompose it into x1 + x2 where
x1 ∈ span(S) and x2 ∈ (span(S))⊥. Hence (span(S))⊥ is nonempty and we have found a way to extend the
supposedly maximal orthonormal subset S of H, contradiction. Thus S is indeed a basis for H.

Problem 2

Show if Y is a proper linear subspace of X then there exists a nonzero element of X∗ that vanishes on Y .

Proof. Clearly we want to invoke the Hahn-Banach theorem, so it suffices to find a larger subspace Z (compared
to Y ) and a functional f ∈ X∗ such that f vanishes on Y but not all of Z. Such construction is easy: we begin
by taking z ∈ X ∖ Y and consider the linear subspace Z ∶= {y + λz ∣ y ∈ Y,λ ∈ K}. Notice that any w ∈ Z can be
written uniquely as w = y + kz because

w = y1 + k1z = y2 + k2z Ô⇒ y2 − y1 = (k1 − k2)z,

where the LHS is in Y and the RHS is in span{z}, and the only possibility is if y1 = y2 and k1 = k2. Therefore
the following functional f on Z is well defined:

f(w) = f(y + kz) = k.

It is also easy to verify that f vanishes on Y but does not vanish entirely on Z. Then f̃ obtained by extending
f to all of X via Hahn-Banach is an nonzero element of X∗, proving the claim.
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Problem 3

For Ω of finite volume, show if f ∈ L∞(Ω) then the norm of the linear functional Lf defined on L1(Ω) by

Lf(g) = ∫
Ω
f(x)g(x) dx for all g ∈ L1(Ω)

satisfies
∥Lf∥(L1)∗ = ∥f∥L∞ .

Hint: consider the sequence of functions gp(x) = ∣f(x)∣p−2f(x) and use Proposition 1.16.

Proof. [This is highly analogous to the example presented in section 4.2.1 except we replaced p, q ∈ (1,∞) by
p = 1, q =∞.] The direction ∥Lf∥(L1)∗ ⩽ ∥f∥L∞ is immediate by Hölder’s inequality:

∣Lf(g)∣ ⩽ ∥f∥∞∥g∥1 Ô⇒ ∥Lf∥∗ ⩽ ∥f∥∞.

It remains to show the other direction. Since there is no such thing as ∣f(x)∣∞−2f(x), we instead consider

gp(x) = ∣f(x)∣p−2f(x).

Similar to the example in text,
∥gp∥1 = ∫

Ω
∣f(x)∣p−1 dx = ∥f∥p−1p−1

and

∣Lf(gp)∣ =
RRRRRRRRRRR
∫
Ω
∣f(x)∣p−2f(x)2 dx

RRRRRRRRRRR
=
RRRRRRRRRRR
∫
Ω
∣f(x)∣p dx

RRRRRRRRRRR
= ∥f∥pp.

Therefore ∥Lf∥∗ ⩾ ∥f∥pp/∥f∥
p−1
p−1. Letting p→∞ we have

∥Lf∥∗ ⩾ lim
p→∞

∥f∥pp
∥f∥p−1p−1

=
limp→∞ ∥f∥pp
limp→∞ ∥f∥p−1p−1

= lim
p→∞

∥f∥p∞
∥f∥p−1∞

= ∥f∥∞.

Problem 4

Use the Rises representation theorem to prove the Hahn-Banach theorem for a Hilbert space.

Proof. Let M be a linear subspace of a Hilbert spaceH. As M inherits the inner product on H, it is also Hilbert.
Therefore given a functional f on M there exists (a unique) m ∈M such that

f(x) = (m,x) for all x ∈M.

Notice that Cauchy-Schwarz gives ∣f(x)∣ ⩽ ∥m∥∥x∥ Ô⇒ ∥f∥∗ ⩽ ∥m∥, and letting f act on m itself gives
∣f(m)∣ = ∥m∥2 and so ∥f∥∗ ⩾ ∥m∥. Therefore ∥f∥∗ = ∥m∥. This is Lemma 7.7 in MATH 580.
Now if we simply define f̃ , a functional on all of H, by

f̃(h) = (m,h) for all h ∈H,

it becomes clear that f̃ extends f and ∥f̃∥H∗ = ∥f∥M∗ (same reasoning as above).
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Problem 5

Suppose that M is a linear subspace of a Banach space X and that {xn} is a sequence of elements of M
that converges weakly in X to some x. Show that x ∈M . Deduce that

x =
∞
∑
i=1

cixi

for some coefficients {ci}. Hint: as a first step show that if f(x) = 0 for every f ∈ X∗ such that f ∣
M
= 0,

then x ∈M .

Proof. If x ∉M then we can invoke the result of problem 2 and consider the linear span of M and x. This (along
with Hahn-Banach) would give is f ∈X∗ that vanishes on M but not at x. But since xn ⇀ x, for this particular
f we must have

0 = lim
n→∞

f(xn) = f(x) ≠ 0

which is absurd. Hence x ∈M .
In addition to x ∈M , we can show analogously that x ∈ span{xn}, and this proves the second claim on {ci}.

Problem 6

If xn ∈ C0([a, b]) and xn ⇀ x in C0([a, b]), show that {xn} is pointwise convergent on [a, b].

Proof. In particular, for t ∈ [a, b], consider ft ∈ (C0([a, b]))∗ defined by ft(x) = x(t). Since [a, b] is compact
and x continuous, we immediately see ft is bounded. Linearity is trivial. Hence ft is indeed in (C0([a, b]))∗.
By weak convergence xn ⇀ x we see ft(xn) → ft(x), i.e., xn(t) → x(t). Since t is chosen arbitrarily, xn → x

pointwise ever were on [a, b].

Problem 7

Let H be Hilbert. Show that if xn ⇀ x in H and ∥xn∥→ ∥x∥ then xn → x.

Proof. First we rewrite ∥xn−x∥2 as ∥xn∥2+∥x∥2−(xn, x)−(x,xn). Since inner product is a continuous mapping,
that xn ⇀ x implies (xn, x)→ (x,x) and (x,xn)→ (x,x). Of course, by assumption ∥xn∥2 → ∥x∥2 as well. Thus
this entire expression → ∥x∥2 + ∥x∥2 − (x,x) − (x,x) = 0, i.e., xn → x strongly.

3


