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Problem 1

Show that if u ∈ D′(Ω) and φn → φ in D(Ω) then

⟨Dαu,φn⟩→ ⟨Dαu,φ⟩ .

Proof. By definition φn → φ in D(Ω) implies Dαφn →Dαφ, and

⟨Dαu,φn⟩ = (−1)∣α∣ ⟨u,Dαφn⟩→ (−1)∣α∣ ⟨u,Dαφ⟩ = ⟨Dαu,φ⟩ .

(The equalities are given on page 113.)

Problem 2

For ψ ∈ C∞c (Ω) and u ∈ D′(Ω), we can define the distribution ψu by

⟨ψu,φ⟩ ∶= ⟨u,ψφ⟩ for all φ ∈ C∞c (Ω).

Show that we do indeed have ψu ∈ D′(Ω) and that

D(uψ) = uDψ + ψDu.

Proof. Let {φn}→ φ in D(Ω). By (5.9) ⟨u,φn⟩→ ⟨u,φ⟩, so

⟨ψu,φn⟩ = ⟨u,ψφn⟩→ ⟨u,ψφ⟩ = ⟨ψu,φ⟩ ,

and

⟨D(uψ), φ⟩ = − ⟨uψ,Dφ⟩ = − ⟨u,ψDφ⟩

= − ⟨u,ψDφ + φDψ − φDψ⟩

= − ⟨u,D(ψφ)⟩ + ⟨u,φDψ⟩ = ⟨Du,ψφ⟩ + ⟨u,φDψ⟩

= ⟨ψDu + uDψ,φ⟩ .
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Problem 4

Prove that, under the conditions of Propitiation 5.8, there exists a constant C(k) such that

∥u∥2Hk ⩽ C ∑
∣α∣=k
∣Dαu∣2 for all u ∈Hk

0 (Ω).

(Hint: induction.)

Proof. Poincaré’s inequality (Proposition 5.8) already gives the base case k = 1. Now assume

∥u∥2Hn ⩽ C ∑
∣α∣=n
∣Dαu∣2

for all u ∈Hn
0 (Ω). By definition ∥u∥2Hn+1 = ∥u∥2Hn + ∑

∣α∣=n+1
∣Dαu∣2, so it suffices to show that

∥u∥2Hn+1 ⩽ Cn ∑
∣α∣=k
∣Dαu∣2 + ∑

∣α∣=n+1
∣Dαu∣2

for all u ∈Hn+1
0 (Ω) [where Cn is the coefficient in our induction hypothesis for case k = n]. By lemma 5.10,

u ∈Hn+1
0 (Ω) Ô⇒ Dαu ∈H1

0(Ω)

so Poincaré’s inequality applies, giving us

∣Dαu∣ ⩽ C ∣D(Dαu)∣ for all Dαu ∈H1
0(Ω).

Note that any multi-index β with ∣β∣ = n + 1 satisfies Dβu =D(Dαu) for some ∣α∣ = 1, and we are done.

Problem 5

Show that if ψ ∈ C∞c (Ω) and u ∈Hk(Ω) then ψu ∈Hk(Ω) and

∥ψu∥Hk(Ω) ⩽ C(ψ)∥u∥Hk(Ω).

Proof. Let {un} ⊂ C∞(Ω) be a sequence whose limit is u. Since

∣Dα(ψun)∣ = ∣ ∑
∣β∣⩽∣α∣

(α
β
)DβψDα−βun∣

⩽ ∑
∣β∣⩽∣α∣

(α
β
)∣Dβψ∣∣Dα−βun∣

= ( ∑
∣β∣⩽∣α∣

(α
β
)∣Dβψ∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
finite

∥un∥Hk(Ω),

all the derivatives of {ψun} up to order k are convergent, and so is their sum. Therefore ψu ∈Hk(Ω) with

∥ψu∥Hk(Ω) ⩽ ( ∑
∣β∣⩽∣α∣

(α
β
)∣Dβψ∣)∥u∥Hk(Ω).
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Problem 6

Show that the unbounded function
f ∶= log log(1 + 1

∣x∣
)

is still an element of H1(B(0,1)) where B(0,1) is the unit ball of R2.

Proof. We first show that f is indeed in L2(B(0,1)):

∫
B(0,1)

[log log(1 + 1

∣x∣
)]

2

dx = ∫
2π

0
∫

1

0
[log log (1 + 1

r
)]

2

r drdθ.

This integral is clearly finite when r ↛ 0, so it suffices to check its behavior near 0:

r [log log (1 + 1

r
)]

2

∼ 2 [log log (1 + 1

r
)] ⋅ 1

log(1 + 1/r)
1

1 + 1/r
1

−r2
(−r2)−1 → 0

by L’Hôpital’s rule. Thus it is L2. The partial derivative(s) is(are) given by

∂f

∂xi
= − 1

log(1 + 1/∣x∣)
xi

∣x∣2(1 + ∣xi∣)

(through writing them as x, y in R2 might have been better). Therefore

∫
B(0,1)

∣Df(x)∣2 dx = ∫
2π

0
∫

1

0

1

r(1 + r)2 log(1 + 1/r)2
drdθ

= 2π∫
1/2

0

1

[...]
dr + 2π∫

1

1/2

1

[...]
dr

⩽ 2π∫
1/2

0

1

r(log r)2
dr + 2π∫

1

1/2

1

[...]
dr

⩽ − 2π

logu
∣
1/2

u=0
+ 2π∫

1

1/2

1

r(1 + r)2(log r)2
dr.

Clearly the second integral is finite, so the entire integral is finite, i.e., f ∈H1(B(0,1)).

Problem 7

Shoe that if Ω ⊂ R3 is a bounded C1 domain then for u ∈H1(Ω)

∥u∥L3 ⩽ C ∣u∣1/2∥u∥1/2H

where ∣u∣ = ∣u∣2 = ∥u∥L2(Ω). Hint: (5.33).

Proof. Using (5.33), since [u(x)]2 = 2∫
xi

−∞
uDiu dyi for i = 1,2,3, we have

∣u(x)∣2 ⩽ 2∫
∞

−∞
∣uDiu∣ dyi

and so
∣u(x)∣3 ⩽ (8∫

∞

−∞
∣uD1u∣ dy1 ∫

∞

−∞
∣uD2u∣ dy2 ∫

∞

−∞
∣uD3u∣ dy3)

1/2
. (∆)

The result will follow from integrating (∆) iteratively. We will adopt the book’s notation in which the constant
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C may vary from line to line, and we will highlight the variables it depends on, if any.

∫ ∣u(x)∣3 dx1 ⩽ C (∫ ∣uD1u∣ dy1)
1/2
(∬ ∣uD2u∣ dx1dy2)

1/2
(∬ ∣uD3u∣ dx1dy3)

1/2
,

∫ ∣u(x)∣3 dx1dx2 ⩽ C (∬ ∣uD1u∣ dy1dx2)
1/2
(∬ ∣uD2u∣ dx1dy2)

1/2
(∬ ∣uD3u∣ dx1dx2dy3)

1/2
,

and finally the RHS evolves to a product related to three triple integrals, namely

∫
Ω
∣u(x)∣3 dx ⩽ C

3

∏
i=1
(∫

Ω
∣uDiu∣ dx)

1/2
.

Since ∫
Ω
∣uDiu∣ dx ⩽ ∣u∣∣Diu∣ we obtain

∥u∥3L3 ⩽ C ∣u∣3/2 ⋅
3

∏
i=1
∣Diu∣1/2 ⩽ C ∣u∣3/2∣Du∣3/2.

Just like in Lemma 5.27, we first use the density of C1
c (Ω′) ⊂H1

0(Ω) to claim ∥u∥L3 ⩽ C ∣u∣1/2∣Du∣1/2 for u ∈H1
0(Ω′)

and then use the extension theorem to prove it for the entire H1(Ω).

Problem 8

(Corollary 5.30) Show that if Ω ∈∈ Rm is a bounded Ck domain and k > (m/2)+ j then each u ∈Hk(Ω) is an
element of Cj(Ω) with

∥u∥Cj ⩽ C∥u∥Hk .

Proof. We simply apply Theorem 5.29 to all Dαu where ∣α∣ ⩽ j. Then it follows that Dαu ∈ C0(Ω) and

∥Dαu∥∞ ⩽ C(m,k, j)∥u∥Hk−j ⩽ C(m,k, j)∥u∥Hk .

In particular, some α shows that u ∈ Cj(Ω) and ∥u∥C ⩽ C∥u∥Hk .

Problem 9

Let V be the subspace of H1(Ω) consisting of functions with zero integral over Ω:

V = {u ∈H1(Ω) ∶ ∫
Ω
u(x) dx = 0}.

Argue by contradiction, using Kellich-Kondrachov Compactness Theorem (Theorem 5.32), that there exists
a constant C that gives the Poincaré inequality:

∣u∣ ⩽ C ∣∇u∣ for all u ∈ V.

Hint: you may assume that if Du = 0 then u is constant a.e.

Proof. Suppose for contradiction that there exists a sequence {un} ⊂ V with ∣un∣ ⩾ n∣∇un∣. Normalizing each
un gives a sequence {vn} such that ∣∇vn∣ ⩽ 1/n. Invoking theorem 5.32 (since {vn} is bounded in H1(Ω)), {vn}
must converge to some function v ∈ V with norm 1 and integral 0 over Ω. Per the hint, since for any test function
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φ ∈ D(Ω)

⟨v,Dφ⟩ = lim
n→∞

⟨vn,Dφ⟩ = − lim
n→∞

⟨Dvn, φ⟩ = 0,

we have Dv = 0, i.e., v is constant a.e. But if this were true, then it’s impossible that

∣v∣ = 1 and ∫
Ω
v(x) dx = 0

simultaneously. We have obtained a contradiction so the Poincaré inequality must hold.

Problem 11

Prove that if u ∈H1
p(Q) then ∣u∣ ⩽ (L/2π)∣Du∣.

Proof. Writing u in terms of its Fourier coefficient, u = ∑
k=Zm

cke
2πikx/L, we obtain

Du = ∑
k∈Zm

2πik

L
cke

2πikx/L.

By Parseval’s identity,

∣u∣2 = Lm ∑
k∈Zm

∣ck ∣2 and ∣Du∣2 = Lm ∑
k∈Zm

[4π
2

L2
∣c2k ∣∣k2∣] ,

and indeed we have ∣u∣ ⩽ (L/2π)∣Du∣.
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