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Problem 1
Show that if u e D'(Q) and ¢,, - ¢ in D(Q) then

(D%, n) = (D%, ).

Proof. By definition ¢,, — ¢ in D(Q) implies D%p,, > D%p, and
(D%, 0n) = (=1)*N(u, D*p) > (=1)"*! (u, D) = (D*u, o).
(The equalities are given on page 113.)
Problem 2
For ¢ € C°(2) and u € D'(§2), we can define the distribution tu by
(Y, @) = (u, ) for all p € C(Q).
Show that we do indeed have ¥u € D'(Q2) and that

D(u) = uD1p + ¢ Du.

Proof. Let {¢n} — ¢ in D(Q). By (5.9) (u, pn) = (u, ¥), so

(Yu, n) = (u, Pon) = (u, p) = (Yu, p),

and

(D(uy), p) = = (wh, Do) = — (u, ¥ Dyp)
=—(u,¥ Dy + Dy — DY)
= —(u, D(Py)) + (u, DY) = (Du, o) + (u, D)
= (YDu+uDy, ).
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Problem 4
Prove that, under the conditions of Propitiation 5.8, there exists a constant C'(k) such that

|ul3e <C > |D%u* forall ue HE(Q).
|a|=k

(Hint: induction.)
Proof. Poincaré’s inequality (Proposition 5.8) already gives the base case k = 1. Now assume

||u|\%1 <C Z |D0‘u\2

|al=n

for all u e HY'(Q2). By definition [u[3. = [ulfm + Y, [D%uf?, so it suffices to show that

|a|=n+1

lulfne < G 37 IDuf + 37 |Duf?

lal=k |a|=n+1

for all u € HY*1(2) [where C,, is the coefficient in our induction hypothesis for case k =n]. By lemma 5.10,
we HY'N(Q) = D%ue H}(Q)
so Poincaré’s inequality applies, giving us
|D%u| < C|D(D*u)| for all D%ue Hy(9).
Note that any multi-index 3 with |3| = n + 1 satisfies D”u = D(D“w) for some |a| = 1, and we are done. O
Problem 5
Show that if 1 € C°(92) and u € H*(Q) then u € H*(Q) and

|vullge) < C@) [ul g ()-

Proof. Let {u,} c C*=(Q) be a sequence whose limit is u. Since

D)l =| ¥ (8)pPeD

B<le|

o
< 3|, IDPID |
110l (5)

:( > (g)|Dﬁ¢|)|un|H’“(Q)’

1BI<|e|

finite

all the derivatives of {¢)u,} up to order k are convergent, and so is their sum. Therefore u € H*(Q) with

vl @< 3 (§)I0% Jlulcor

1Bl<lal \P
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Problem 6

Show that the unbounded function
1

f= loglog(l + )
||

is still an element of H'(B(0,1)) where B(0,1) is the unit ball of R?.

Proof. We first show that f is indeed in L?(B(0,1)):

1 2 27 1 1112
f [loglog(l+)] dx:f f [loglog(1+7)] r drdf.
B(0,1) || o Jo T

This integral is clearly finite when r + 0, so it suffices to check its behavior near 0:

r[lo lo (1 + 1)]2 2[10 lo (1 + 1)] L L L (-rH) =0
il I 2. (- >
glos{tr s ST N Tog (T 1) T 1 =12
by L’Hépital’s rule. Thus it is L2. The partial derivative(s) is(are) given by
of 1 T;

dw; log(1+1/[a]) [o(1+ |zl

(through writing them as z,y in R? might have been better). Therefore

2 1 1
Df@fdz= [ [ drd
./B(o,1)| J@)f d o Jo r(1+7r)2log(l+1/r)? "
172 1 11
=2 —dr+2 —d
”fo 19" ”fl/g i

1/2 1 |
<27 f ——— dr+2m f —dr
o r(logr)? 172 [...]

1/2 1 1

2m +2 f d
-—— 7r ———dr.
logu|,_, 172 7(1+7)2(logr)?
Clearly the second integral is finite, so the entire integral is finite, i.e., f € H'(B(0,1)). O
Problem 7
Shoe that if Q c R? is a bounded C! domain then for u € H(Q)
Juls < Cf 2 ul37*
where |u| = |ulz = |ul| 2 (q). Hint: (5.33).
X
Proof. Using (5.33), since [u(x)]? =2 f uD;u dy; for i =1,2,3, we have
u(@)P <2 [ " juDiuldy,
and so
. oo oo oo 1/2
() < (8 [y, [T ubauldys [ ubygu dyg) . (A)

The result will follow from integrating (A) iteratively. We will adopt the book’s notation in which the constant
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C' may vary from line to line, and we will highlight the variables it depends on, if any.

1/2

1/2 1/2
f|u(x)\3 dz; < C(/\uD1u| dyl) (/]|uD2u| dxldyg) (/]|uD3u| dxldyg) ,
1/2

1/2 1/2
f|u(gc)|3 dz1dzs gC(f |uDyul dyldxg) (/ |uDoul dmldyg) (/ |uDsul d:vldxgdyg) ,

and finally the RHS evolves to a product related to three triple integrals, namely
3 1/2
f|u(:g)|3 de<CJ] (/ |uD;ul dx) .
Q i1 \Jo
Since [Q|uDlu| dz < |u||D;u| we obtain

3
[ulgs < Cluf*? - TTIDul® < Clul®|Duf*’.

i=1

Just like in Lemma 5.27, we first use the density of C1(Q') ¢ H () to claim |u| s < Clul*?|Du|'/? for u e H ()

and then use the extension theorem to prove it for the entire H1(12). O

Problem 8

(Corollary 5.30) Show that if Q ee R™ is a bounded C* domain and &k > (m/2) + j then each u € H*(Q) is an
element of C7(Q) with

lulci < Clulpe.

Proof. We simply apply Theorem 5.29 to all D%y where |a| < j. Then it follows that D%u e C°(Q) and
[D%ulloo < C(m, k) |ul =i < C(ms K, §) [u] -
In particular, some o shows that v € C7(Q) and ||u]c < C|u| g+ O
Problem 9
Let V be the subspace of H'(Q) consisting of functions with zero integral over €2
V={ueH(Q): fQu(x) dz = 0).

Argue by contradiction, using Kellich-Kondrachov Compactness Theorem (Theorem 5.32), that there exists

a constant C' that gives the Poincaré inequality:

[u| € C|Vul for all ueV.

Hint: you may assume that if Du =0 then wu is constant a.e.

Proof. Suppose for contradiction that there exists a sequence {u,} c V with |u,| > n|Vu,|. Normalizing each
u, gives a sequence {v,} such that |Vv,|< 1/n. Invoking theorem 5.32 (since {v,} is bounded in H'(Q)), {v,}

must converge to some function v € V with norm 1 and integral 0 over €. Per the hint, since for any test function
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peD(Q)
(v,Dp) = lim (vn, D) = = lim (Duy, ) =0,
we have Dv =0, i.e., v is constant a.e. But if this were true, then it’s impossible that
lv] =1 and f v(z)dz =0
Q
simultaneously. We have obtained a contradiction so the Poincaré inequality must hold. O
Problem 11
Prove that if u € H)(Q) then |u| < (L/27)|Dul.
Proof. Writing u in terms of its Fourier coefficient, u = Z cre?™ L we obtain
k=7Zm
Du = Z 27Tikcke2mkm/L_
keZ™ L
By Parseval’s identity,
2 m 2 2 m 4r% 5o
W=7 $ e and DuP =L Y | I,
keZm™ keZm™
and indeed we have |u| < (L/27)|Dul. O



