

Legend: Def, Thm, Key ideas, Cor

5.1 Power Method

Inner product: $\langle x, y \rangle := \sum_{i=1}^n x_i \bar{y}_i = y^* x$.

Induced norm: $\|x\| := \sqrt{\langle x, x \rangle}$.

L_p norm: $\|x\|_p := \left(\sum_{i=1}^n |x_i|^p \right)^{1/p}$.

Power Method

Requirement: single λ_1 with maximum modulus and n L.I. eigenvectors.

Process:

(1) Begin with nonzero $x^{(0)} = \sum_{i=1}^n a_i e^{(i)}$

(2) Iterate with $x^{(k)} = Ax^{(k-1)} = A^k x^{(0)}$

Properties:

(1) $x^{(k)} = A^{(k)} x^{(0)} = \lambda_1^k (a_1 e^{(1)} + \epsilon^k)$

(2) $\epsilon^k \rightarrow 0$ (i.e., $x^{(k)}/\lambda_1^k \rightarrow a_1 e^{(1)}$)

(3) $\lim x^{(k+1)}/x^{(k)} = \lambda_1$

Aitken Acceleration

Idea: if $\{r_n\} \rightarrow r$ then we can build a new sequence that converges faster.

Aitken Acceleration: the sequence $\{s_n\}$

as defined below converges to r faster:

$$s_n := \frac{r_n r_{n+2} - r_{n+1}^2}{r_{n+2} - 2r_{n+1} + r_n}$$

(i.e., $\lim(s_n - r)/(r_n - r) = 0$).

Warning: Aitken accel. must be stopped once we hit a stationary value (computers are bad at small number subtraction).

Inverse Power Method

Idea: if A is invertible and has a single λ_n with minimum modulus then we can apply the power method to A^{-1} . (Inverse matrix has reciprocal eigenvalues.) The iteration step is done by $Ax^{(k+1)} = x^{(k)}$ (Gaussian elimination instead of computing A^{-1}).

Usage: computes smallest eigenvalue of A .

Other Variants

- (1) Shifted power method: uses $A - \mu I$ and iterates $x^{(k+1)} = (A - \mu I)x^{(k)}$; computes eigenvalue farthest from μ .
- (2) Shifted inverse power method: uses $(A - \mu I)x^{(k+1)} = x^{(k)}$; computes eigenvalue of A closest to μ .

(3) Requirement: if for e.g. we want to get λ_3 by prescribing a close enough μ to $|\lambda_3|$, we need $|\lambda_2| > |\lambda_3| > |\lambda_4| \geq \dots$

5.2 Schurs & Gershgorin

Localizing Eigenvalues

Gershgorin: all eigenvalues of $A_{n \times n}$ are contained in the union of D_i , where

$$D_i := \{z \in \mathbb{C} : |z - a_{i,i}| \leq \sum_{j \neq i} |a_{i,j}|\}.$$

Generalized Gershgorin: if $P^{-1}AP$ diagonalizes A and B is any matrix, then the eigenvalues of $A + B$ lie in the union of D_i 's:

$$D_i := \{z \in \mathbb{C} : |z - \lambda_i| \leq \kappa_\infty(P) \|B\|_\infty\}$$

where $\lambda_i \in \Lambda(A)$, $\kappa_\infty(P) = \|P\|_\infty \|P^{-1}\|_\infty$.

(If A is diagonal then $P = I$. If in addition B has zero diagonal then this special case gives Gershgorin's theorem.)

Unitary Matrices

Unitary matrix: $UU^* = I$.

Lemmas:

- (1) $I - vv^*$ is unitary iff $\|v\|_2^2 = 2$ or 0. Proof: expand $(I - vv^*)^*(I - vv^*)$ and use that $(vv^*) = vv^*$.
- (2) If $\|x\|_2 = \|y\|_2$ and $\langle x, y \rangle \in \mathbb{R}$ then for some $(I - vv^*)$ we have $(I - vv^*)x = y$. Proof: let $v = \sqrt{2}(x - y)/\|x - y\|_2$.

Schur's Factorization

Schur: every square matrix is unitarily similar to a triangular matrix, i.e., any A satisfies $A = U^{-1}BU$ for some unitary U and triangular B .

Corollary: every Hermitian matrix is unitarily similar to a diagonal matrix. Indeed, if

$$(UAU^*)^* = UAU^*$$

then UAU^* is upper and lower triangular.

5.3 Least-Squares

Orthogonal (set): $\langle v_i, v_j \rangle = 0$ for any $v_i, v_j \in \{v_1, \dots, v_n\}$.

Orthonormal (set): $\langle v_i, v_j \rangle = \delta_{i,j}$ (1 or 0).

Generalized Pythagorean: if $\langle x, y \rangle = 0$ then $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.

Gram-Schmidt

Requirement: start with a set of L.I. vectors $\{x_1, \dots, x_n\}$. Goal: get orthonormal vectors.

Process:

(1) Set $u_1 := x_1/\|x_1\|$.

(2) Inductively, $u'_k := x_k - \sum_{i < k} \langle x_k, u_i \rangle u_i$.

(3) Normalization: $u_k := u'_k / \|u'_k\|$.

Corollary: the finite truncation $\{u_1, \dots, u_k\}$ is an orthonormal basis for $\text{span}\{x_1, \dots, x_k\}$.

G-S Factorization: applying G-S to $A_{m \times n}$, we obtain $A = BT$ where $B_{m \times n}$ has orthonormal columns and T upper triangular with positive diagonal.

Modified G-S: auto-normalization:

$$u_k := x_k - \sum_{i < k} \frac{\langle x_k, u_i \rangle u_i}{\langle u_i, u_i \rangle}.$$

Least-Squares Problem

Idea: $Ax = b$ may or may not have a solution. If not, try to minimize $\|b - Ax\|_2$.

Least-Squares: if $A^*(Ax - b) = 0$ then x solves the least-squares problem:

$$\begin{aligned} \|b - Ax\|_2^2 &= \|b - Ax + A(x - y)\|_2^2 \\ &= \|b - Ax\|_2^2 + \|A(x - y)\|_2^2. \end{aligned}$$

By assumption $b - Ax$ is orthogonal to the column space of A , in which there's $A(x - y)$.

Corollary: if $A = BT$ (B orthogonal, T triangular), then the least-squares solution is

$$Tx = (B^*B)^{-1}B^*b.$$

5.4 SVD & Pseudoinverses

SVD: any $A_{m \times n}$ can be factorized into

$$A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$$

where U, V^T are unitary and D diagonal.

Pseudoinverse: if $A = U\Sigma V^T$ then the pseudoinverse A^+ is $A^+ = V\Sigma^+U^T$ where Σ^+ takes reciprocal of nonzero diagonal entries.

Penrose: for $A_{m \times n}$, there exists at most one X satisfying (1) $AXA = A$, (2) $XAX = X$, (3) $(AX)^* = AX$, and (4) $(XA)^* = XA$ at the same time.

Corollary: A^+ is a (therefore *the*) matrix satisfying the Penrose properties.

More corollaries: let $A = U\Sigma V^T$.

- (1) If Σ has r nonzero entries then $\text{rank}(A) = r$.
- (2) $\{v_1, \dots, v_r\}$ is an orthonormal basis for $\text{range}(A)$.
- (3) $\{u_{r+1}, \dots, u_n\}$ is an orthonormal basis for $\text{null}(A)$.
- (4) $\|A\|_2 = \max |\sigma_i|$.

Minimal Solutions

Idea: further generalization of least-squares solution. Let $A_{m \times n}x = b$ be given. This system is **consistent** if there's a solution. Now we define the **minimal solution**:

- (1) If the system is consistent and has a unique solution then it is the minimal solution.
- (2) If consistent + a set of solutions, then the minimal solution is the one with the least Euclidean norm.
- (3) If inconsistent + unique least-squared solution then it is the minimal solution.
- (4) If inconsistent + a set of least-squared solution, then take the one with least Euclidean norm.

Corollary. $\rho := \inf\{\|Ax - b\|_2 : x \in \mathbb{C}^n\}$ can be obtained. Furthermore, among all that obtain this infimum, there exists an x that minimizes $\|x\|_2$ (i.e., minimal solutions always exist).

Minimal solution: the minimal solution of $Ax = b$ is given by $x = A^+b$.

6.1 Poly. Interpolation

Interpolation: given $(x_0, y_0), \dots, (x_n, y_n)$ a set of $n+1$ **nodes**, construct a degree $\leq n$ polynomial p with $p(x_i) = y_i$.

Newton Form

Interpolation (Newton): there exists a unique polynomial of degree $\leq n$ that interpolates $(x_0, y_0), \dots, (x_n, y_n)$ where the x_i 's are distinct.

Proof sketch: induction. $p_0(x_0) = y_0$ and

$$p_k(x) := p_{k-1}(x) + c \prod_{i=0}^{k-1} (x - x_i)$$

where c is given by (to satisfy $p_k(x_k) = y_k$)

$$c := \frac{y_k - p_{k-1}(x_k)}{(x_k - x_0) \dots (x_k - x_{k-1})}.$$

Lagrange Form

Idea: (easy for us but hard for computers)

$$p_n(x) := y_0 \ell_0(x) + \dots + y_n \ell_n(x) = \sum_{i=0}^n y_i \ell_i(x).$$

Here $\ell_i(x_j) = \delta_{i,j}$. Because of this, ℓ can be characterized by

$$\ell_i(x) = c \prod_{j \neq i} (x - x_j)$$

and the condition $\ell_i(x_i) = 1$ demands

$$c = \prod_{j \neq i} (x_i - x_j)^{-1} \implies \ell_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

The ℓ 's are called the **cardinal functions**.

Vandermonde Matrix

Idea: we want to find

$$p_n(x) := a_0 + a_1 x + \dots + a_n x^n = \sum_{i=0}^n a_i x^i$$

that interpolates the data.

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

The matrix on the left is a **Vandermonde matrix**. It is invertible if x_i 's are distinct.

Warning. This matrix is often ill-conditioned if some $|x_i| > 1$. Thus, it is not ideal for computer computations.

Errors & Chebyshev

Errors. If $f \in C^{n+1}[a, b]$ and p of degree $\leq n$ interpolates f at $n+1$ points. Then for each $x \in [a, b]$ there exists $\xi_x \in [a, b]$ with

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i).$$

Chebyshev polynomials: define iteratively

$$\begin{cases} T_0(z) = 1 & T_1(x) = x \\ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). \end{cases}$$

Properties:

- (1) $T_n(x) = \cos(n \cos^{-1}(x))$ for $x \in [-1, 1]$
- (2) $|T_n(x)| \leq 1$ for $x \in [-1, 1]$.

(3) $T_n(\cos(k\pi/n)) = \cos(k\pi) = (-1)^k$ for $0 \leq k \leq n$.

(4) T_n is a degree- n poly with leading term $2^{n-1}x^n$, so $2^{1-n}T_n$ is **monic**.

(5) If p is monic with $\deg(p) = n$ then $\|p\|_\infty = \sup_{-1 \leq x \leq 1} |p(x)| \geq 2^{1-n} = \|2^{1-n}T_n\|_\infty$.

Corollary. From above, the last term in the “error” theorem attains minimum if the polynomial is $2^{-n}T_{n+1}$. If so, the nodes are

$$x_i = \cos\left(\frac{(2k+1)\pi}{2k+2}\right) \quad 0 \leq k \leq n.$$

6.2 Divided Differences

Idea: design a specific algorithm to obtain the coefficients for the Newton form.

Process: for simplicity consider

$$p_2(x) = c_0 q_0(x) + c_1 q_1(x) + c_2 q_2(x)$$

where $(x_0, y_0), (x_1, y_1)$, and (x_2, y_2) are given. By definition $q_0(x) = 1, q_1(x) = x - x_0$, and $q_2(x) = (x - x_0)(x - x_1)$.

- (1) Solve $p_0(x) = c_0 q_0(x)$. $q_0 = y_0 =: f[x_0]$.
- (2) Solve $p_1(x) = y_0 + c_1(x - x_0)(x - x_1)$. This gives

$$c_1 = \frac{y_1 - y_0}{x_1 - x_0} =: f[x_0, x_1].$$

- (3) Finally, solve for p_2 and get

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}.$$

Divided differences: in Newton form, if $p_n(x) = \sum_{i=0}^n c_i q_i(x)$ then

$$c_i = f[x_0, \dots, x_i]$$

and these are called the divided differences.

Corollary. Divided differences are symmetric. If $\{x_0, \dots, x_n\} = \{z_0, \dots, z_n\}$,

$$f[x_0, \dots, x_n] = f[z_0, \dots, z_n].$$

Recursive divided difference:

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}.$$

This gives a systematic way to compute all the divided differences. Once we obtain $f[x_i]$ from step (1) above, we can repeatedly use this theorem to compute more.

Corollary. If p is a polynomial of degree $\leq n$ that interpolates f on x_0, \dots, x_n , then for a different point t ,

$$f(t) - p(t) = f[x_0, \dots, x_n, t] \prod_{i=0}^n (t - x_i).$$