
MATH 501 Final Exam Cheat Sheet YQL

Legend: Def, Thm , Key ideas, Cor

5.1 Power Method

Inner product: ⟨x, y⟩ ∶=
n

∑
1

xiyi = y∗x.

Induced norm: ∥x∥ ∶=
√
⟨x,x⟩.

Lp norm: ∥x∥p ∶= (
n

∑
i=1
∣xi∣p)

1/p
.

Power Method

Requirement: single λ1 with maximum
modulus and n L.I. eigenvectors.
Process:
(1) Begin with nonzero x(0) =

n

∑
i=1

aie
(i)

(2) Iterate with x(k) = Ax(k−1) = Akx(0)

Properties:
(1) x(k) = A(k)x(0) = λk

1(a1e(1) + ϵk)
(2) *** x(k)/λk

1 → a1e
(1)

(3) *** limx(k+1)/x(k) = λ1

Aitken Acceleration

Idea: if {rn} → r then we can build a new
sequence that converges faster.
Aitken Acceleration : the sequence {sn}
as defined below converges to r faster:

sn ∶=
rnrn+2 − r2n+1

rn+2 − 2rn+1 + rn
(i.e., lim(sn − r)/(rn − r) = 0).
Warning: Aitken accel. must be stopped
once we hit a stationary value (computeres
are bad at small number subtraction).

Inverse Power Method

Idea: if A is invertible and has a single λn

with minimum modulus then we can apply
the power method to A−1. (Inverse matrix
has reciprocal eigenvalues.) The iteration
step is done by Ax(k+1) = x(k) (Gaussian
elimination instead of computing A−1).
Usage: computes smallest eigenvalue of A.

Other Variants

(1) Shifted power method: uses A − µI

and iterates x(k+1) = (A − µI)x(k);
computes eigenvalue farthest from µ.

(2) Shifted inverse power method: uses
(A−µI)x(k+1) = x(k); computes eigen-
value of A closest to µ.

(3) Requirement: if for e.g. we want to
get λ3 by prescribing a close enough
µ to ∣λ3∣, we need ∣λ2∣>∣λ3∣>∣λ4∣ ⩾ ...

5.2 Schurs & Gershgorin

Localizing Eigenvalues

Gershgorin : all eigenvalues of An×n are
contained in the union of Di, where

Di ∶= {z ∈ C ∶ ∣z − ai,i∣ ⩽∑
j≠i
∣ai,j ∣}.

Generalized Gershgorin : if P −1AP di-
agonalizes A and B is any matrix, then the
eigenvalues of A+B lie in the union of Di’s:

Di ∶= {z ∈ C ∶ ∣z − λi∣ ⩽ κ∞(P)∥B∥∞}

where λi ∈ Λ(A), κ∞(P) = ∥P ∥∞∥P −1∥∞.
(If A is diagonal then P = I. If in addition
B has zero diagonal then this special case
gives Gershgorin’s theorem.)

Unitary Matrices

Unitary matrix: UU∗ = I.
Lemmas:
(1) I − vv∗ is unitary iff ∥v∥22 = 2 or 0.

Proof: expand (I −vv∗)∗(I −vv∗) and
use that (vv∗) = vv∗.

(2) If ∥x∥2 = ∥y∥2 and ⟨x, y⟩ ∈ R then for
some (I − vv∗) we have (I − vv∗)x = y.
Proof: let v =

√
2(x − y)/∥x − y∥2.

Schur’s Factorization

Schur : every square matrix is unitarily
similar to a triangular matrix, i.e., any A

satisfies A = U−1BU for some unitary U and
triangular B.
Corollary: every Hermitian matrix is uni-
tarily similar to a diagonal matrix. Indeed,
if

(UAU∗)∗ = UA∗U∗

then UAU∗ is upper and lower triangular.

5.3 Least-Squares

Orthogonal (set): ⟨vi, vj⟩ = 0 for any vi, vj ∈
{v1, ..., vn}.
Orthonormal (set): ⟨vi, vj⟩ = δi,j (1 or 0).

Generalized Pythagorean : if ⟨x, y⟩ = 0
then ∥x + y∥2 = ∥x∥2 + ∥y∥2.

Gram-Schmidt

Requirement: start with a set of L.I. vectors
{x1, ..., xn}. Goal: get orthonormal vectors.
Process:
(1) Set u1 ∶= x1/∥x1∥.
(2) Inductively, u′k ∶= xk −∑

i<k
⟨xk, ui⟩ui.

(3) Normalization: uk ∶= u′k/∥u′k∥.
Corollary: the finite truncation {u1, ..., uk}
is an orthonormal basis for span{x1, ..., xk}.
G-S Factorization : applying G-S to
Am×n, we obtain A = BT where Bm×n has
orthonormal columns and T upper triangu-
lar with positive diagonal.
Modified G-S: auto-normalization:

uk ∶= xk −∑
i<k

⟨xk, ui⟩ui

⟨ui, ui⟩
.

Least-Squares Problem

Idea: Ax = b may or may not have a solu-
tion. If not, try to mnimize ∥b −Ax∥2.
Least-Squares : if A∗(Ax − b) = 0 then x

solves the least-squares problem:

∥b −Ay∥22 = ∥b −Ax +A(x − y)∥22
= ∥b −Ax∥22 + ∥A(x − y)∥22.

By assumption b − Ax is orthogonal to the
column space of A, in which there’s A(x−y).
Corollary: if A = BT (B orthogonal, T tri-
angular), then the least-squares solution is

Tx = (B∗B)−1B∗b.

5.4 SVD & Pseudoinverses

SVD: any Am×n can be factorized into

Am×n = Um×mΣm×nV
T
n×n

where U,V T are unitary and D diagonal.
Pseudoinverse: if A = UΣV T then the pseu-
doinverse A+ is A+ = V Σ+UT where Σ+

takes reciprocal of nonzero diagonal entries.
Penrose : for Am×n, there exists at most
one X satisfying (1) AXA = A, (2) XAX =
X, (3) (AX)∗ = AX, and (4) (XA)∗ = XA

at the same time.

MATH 501 Final Exam Cheat Sheet YQL

Corollary: A+ is a (therefore the) matrix
satisfying the Penrose properties.
More corollaries: let A = UΣV T .
(1) If Σ has r nonzero entries then

rank(A) = r.
(2) {v1, ..., vr} is an orthonormal basis for

range(A).
(3) {ur+1, ..., un} is an orthonormal basis

for null(A).
(4) ∥A∥2 =max∣σi∣.

Minimal Solutions

Idea: further generalization of least-squares
solution. Let Am×nx = b be given. This sys-
tem is consistent if there’s a solution. Now
we define the minimal solution:
(1) If the system is consistent and has a

unique solution then it is the minimal
solution.

(2) If consistent + a set of solutions, then
the minimal solution is the one with
the least Euclidean norm.

(3) If inconsistent + unique least-squared
solution then it is the minimal solu-
tion.

(4) If inconsistent + a set of least-squared
solution, then take the one with least
Euclidean norm.

Corollary. ρ ∶= inf{∥Ax − b∥2 ∶ x ∈ Cn} can
be obtained. Furthermore, among all that
obtain this infimum, there exists an x that
minimizes ∥x∥2 (i.e., minimal solutions al-
ways exist).
Minimal solution : the minimal solution
of Ax = b is given by x = A+b.

6.1 Poly. Interpolation

Interpolation: given (x0, y0), ..., (xn, yn) a
set of n + 1 nodes, construct a degree ⩽ n
polynomial p with p(xi) = yi.

Newton Form

Interpolation (Newton) : there exists a
unique polynomial of degree ⩽ n that inter-
polates (x0, y0), ..., (xn, yn) where the xi’s
are distinct.

Proof sketch: induction. p0(x0) = y0 and

pk(x) ∶= pk−1(x) + c
k−1
∏
i=0
(x − xi)

where c is given by (to satisfy pk(xk) = yk)

c ∶= yk − pk−1(xk)
(xk − x0)...(xk − xk−1)

.

Lagrange Form

Idea: (easy for us but hard for computers)

pn(x) ∶= y0ℓ0(x) + ... + ynℓn(x) =
n

∑
i=0

yiℓi(x).

Here ℓi(xj) = δi,j . Because of this, ℓ can be
characterized by

ℓi(x) = c∏
j≠i
(x − xj)

and the condition ℓi(xi) = 1 demands

c =∏
j≠i
(xi − xj)−1 Ô⇒ ℓi(x) =∏

j≠i

x − xj

xi − xj
.

The ℓ’s are called the cardinal functions.

Vandermonde Matrix

Idea: we want to find

pn(x) ∶= a0 + a1x + ...anxn =
n

∑
i=0

aix
i

that interpolates the data.
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 ⋯ xn
0

1 x1 ⋯ xn
1

⋮ ⋮ ⋱ ⋮
1 xn ⋯ xn

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

⋮
an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

⋮
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix on the left is a Vandermonde
matrix. It is invertible if xi’s are distinct.
Warning. This matrix is often ill-
conditioned if some ∣xi∣ > 1. Thus, it is not
ideal for computer computations.

Errors & Chebyshev

Errors . If f ∈ Cn+1[a, b] and p of degree
⩽ n interpolates f at n + 1 points. Then for
each x ∈ [a, b] there exists ξx ∈ [a, b] with

f(x)− p(x) = 1

(n + 1)!
f (n+1)(ξx)

n

∏
i=0
(x−xi).

Chebyshev polynomials: define iteratively
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T0(z) = 1 T1(x) = x

Tn+1(x) = 2xTn(x) − Tn−1(x).

Properties:
(1) Tn(x) = cos(n cos−1(x)) for x ∈ [−1,1]
(2) ∣Tn(x) ⩽ 1∣ for x ∈ [−1,1].

(3) Tn(cos(kπ/n)) = cos(kπ) = (−1)k for
0 ⩽ k ⩽ n.

(4) Tn is a degree-n poly with leading
term 2n−1xn, so 21−nTn is monic.

(5) If p is monic with deg(p) = n then

∥p∥∞ = sup
−1⩽x⩽1

∣p(x)∣ ⩾ 21−n = ∥21−nTn∥∞.

Corollary. From above, the last term in
the “error” theorem attains minimum if the
polynomial is 2−nTn+1. If so, the nodes are

xi = cos(
(2k + 1)π
2k + 2

) 0 ⩽ k ⩽ n.

6.2 Divided Differences

Idea: design a specific algorithm to obtain
the coefficients for the Newton form.
Process: for simplicity consider

p2(x) = c0q0(x) + c1q1(x) + c2q2(x)

where (x0, y0), (x1, y1), and (x2, y2) are
given. By definition q0(x) = 1, q1(x) = x−x0,
and q2(x) = (x − x0)(x − x1).
(1) Solve p0(x) = c0q0(x). q0 = y0 =∶

f[x0].
(2) Solve p1(x) = y0 + c1(x − x0)(x − x1).

This gives

c1 =
y1 − y0
x1 − x0

=∶ f[x0, x1].

(3) Finally, solve for p2 and get

f[x0, x1, x2] =
f[x1, x2] − f[x0, x1]

x2 − x0
.

Divided differences: in Newton form, if

pn(x) =
n

∑
i=0

ciqi(x) then

ci = f[x0, ..., xi]

and these are called the divided differences.
Corollary. Divided differences are
symmetric. If {x0, ..., xn} = {z0, ..., zn},

f[x0, ..., xn] = f[z0, ..., zn].

Recursive divided difference :

f[x0, ..., xn] =
f[x1, ..., xn] − f[x0, ..., xn−1]

xn − x0
.

This gives a systematic way to compute all
the divided differences. Once we obtain
f[xi] from step (1) above, we can repeat-
edly use this theorem to compute more.
Corollary. If p is a polynomial of degree ⩽ n
that interpolates f on x0, ..., xn, then for a
different point t,

f(t) − p(t) = f[x0, ..., xn, t]
n

∏
i=0
(t − xi).

