

Math 501
Spring 2021
Final
May 7, 2021
Time: 11:00 am -1:00 pm

Name: Qilin Ye

This exam contains 8 pages (including this cover page) and 5 questions.
Total of points is 100.

- **Show your work.**
- an A4 cheatsheet (two sides) is allowed.
- No calculator, cell/smart phone or other electronic device.

Grade Table (for teacher use only)

Question	Points	Score
1	16	
2	24	
3	20	
4	20	
5	20	
Total:	100	

MATH 501 Final Exam

Qilin Ye

May 7, 2021

Problem 1

Prove that if the eigenvalues of A satisfy $|\lambda_1| > |\lambda_i|$ for all other i 's then

$$\lambda_1 = \lim_{m \rightarrow \infty} \text{tr}(A^{m+1})/\text{tr}(A^m).$$

Proof. Notice that if λ is an eigenvalue of A , then λ^k is one of A^k , and they correspond to the same eigenvector x :

$$A^k x = A^{k-1}(Ax) = \lambda A^{k-1} x = \lambda A^{k-2}(Ax) = \dots = \lambda^k x.$$

Therefore $\text{tr}(A^k) = \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k$. It follows that

$$\begin{aligned} \lim_{m \rightarrow \infty} \frac{\text{tr}(A^{m+1})}{\text{tr}(A^m)} &= \lim_{m \rightarrow \infty} \frac{\lambda_1^{m+1} + \dots + \lambda_n^{m+1}}{\lambda_1^m + \dots + \lambda_n^m} \\ &= \lim_{m \rightarrow \infty} \left[\lambda_1 + \frac{(\lambda_1 - \lambda_2)\lambda_2^m + \dots + (\lambda_1 - \lambda_n)\lambda_n^m}{\lambda_1^m + \dots + \lambda_n^m} \right] \end{aligned}$$

where the large fraction tends to 0 as $m \rightarrow \infty$ because $(\lambda_i/\lambda_1)^m \rightarrow 0$ for all $i \geq 2$. Therefore the limit is λ_1 . \square

Problem 2

- (a) Prove that if $A_{m \times n}$ is of rank n then $A^* A$ is nonsingular.
- (b) Prove that if $A_{m \times n}$ is of rank n then $A^* A$ is Hermitian and positive definite.
- (c) Prove that if $A_{m \times n}$ is of rank n then $A^+ = (A^* A)^{-1} A^*$. *In the proof please clarify the size of matrices at each step.*

Proof.

- (a) If $A^* A x = 0$ then in particular $x^* A^* A x = 0$, and so

$$0 = x^* A^* A x = \langle Ax, Ax \rangle = \|Ax\|^2$$

which implies $Ax = 0$. But since A has full column rank, this implies $x = 0$. Thus $A^* A$ is invertible.

- (b) That $A^* A$ is Hermitian is trivial: $(A^* A)^* = A^* A^{**} = A^* A$. For positive definiteness:

$$x^* A^* A x = \langle Ax, Ax \rangle = \|Ax\|^2 \geq 0,$$

and since it is of full column rank, 0 can be obtained if and only if $x = 0$.

(c) For this one, it suffices to check that $(A^* A)^{-1} A^*$ satisfies all Penrose properties:

$$A_{m \times n} [(A^* A)^{-1} A^*]_{n \times m} A_{m \times n} = A_{m \times n} \underbrace{(A^* A)^{-1} (A^* A)}_{=I_{n \times n}} = A \quad (1)$$

$$[(A^* A)^{-1} A^*]_{n \times m} A_{m \times n} [(A^* A)^{-1} A^*]_{n \times m} = (A^* A)_{n \times n}^{-1} \underbrace{(A^* A)(A^* A)^{-1}}_{I_{n \times n}} A_{n \times m}^* = (A^* A)^{-1} A^* \quad (2)$$

$$\begin{aligned} (A_{m \times n} [(A^* A)^{-1} A^*]_{n \times m})^* &= A_{m \times n}^{**} ((A^* A)^{-1})_{n \times n}^* A^* \\ &= A_{m \times n} ((A^* A)^*)_{n \times n}^{-1} A^* \end{aligned}$$

$$[2(b): A^* A \text{ Hermitian}] = A((A^* A)^*)^{-1} A = A_{m \times n} [(A^* A)^{-1} A^*]_{n \times m}. \quad (3)$$

$$I_{n \times n}^* = ([(A^* A)^{-1} A^*]_{n \times m} A_{m \times n})^* = A_{n \times m}^* A_{m \times n}^{**} ((A^* A)^{-1})_{n \times n}^* = A^* A (A^* A)^{-1} = I_{n \times n}. \quad (4)$$

□

Problem 3

Let $\|A\|_2$ denote the matrix norm subordinate to the Euclidean 2-norm. Let the singular values of A be $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n$. Prove that $\|A\|_2 = \sigma_1$.

Proof. First notice that if U is any unitary matrix then for x , a vector of corresponding size, $\|Ux\| = \|x\|$. Indeed,

$$\|Ux\|^2 = \langle Ux, Ux \rangle = \langle x, U^* Ux \rangle = \langle x, x \rangle = \|x\|^2$$

(so it holds in particular for $\|\cdot\|_2$). Now let $A = U\Sigma V^T$ be the singular value decomposition of A . It follows that

$$\begin{aligned} \|A\|_2 &= \sup_{\|x\|_2=1} \|Ax\|_2 = \sup_{\|x\|_2=1} \|U\Sigma V^T x\|_2 \\ &= \sup_{\|x\|_2=1} \|DQx\|_2 \quad (U \text{ unitary}) \\ &= \sup_{\|y\|_2=1} \|Dy\|_2 \quad (y := V^T x; V^T \text{ unitary}) \\ &= \|De^{(1)}\|_2 = \sqrt{\sigma_1^2} = |\sigma_1| = \sigma_1. \end{aligned}$$

□

Problem 4

(a) Consider $f(x) := x^m$, $m \in \mathbb{N}$. Show that

$$f[x_0, \dots, x_n] = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n > m. \end{cases}$$

Proof. (a) If we can prove that when $n = m$ the divided difference is 1 then we are done, as

$$f[x_0, \dots, x_{m+1}] = \frac{f[x_1, \dots, x_{m+1}] - f[x_0, \dots, x_m]}{x_{m+1} - x_0} = \frac{1 - 1}{x_{m+1} - x_0} = 0,$$

and inductively one can show that the same holds for any $n > m$. But indeed this is true, since by the MVT for divided difference, if $x_0, \dots, x_m \in [a, b]$ then

$$f[x_0, \dots, x_m] = \frac{f^{(m)}(\xi)}{m!} \quad \text{for some } \xi \in [a, b].$$

On the other hand, regardless of the value of ξ , the m^{th} order derivative of ξ^m is $m(m-1)\dots = m!$, so the fraction simplifies nicely to 1, proving our claim.

(b) We approach this identity by induction. The base case is obviously true:

$$f[x_0] = f(x_0) = \sum_{i=0}^0 \left[f(x_i) \prod_{j \neq i} (x_i - x_j)^{-1} \right].$$

Now for the inductive step, we suppose that the equation holds for any divided difference with k indeterminate, that is, we have

$$f[x_0, \dots, x_k] = \sum_{i=0}^k \left[f(x_i) \prod_{j \neq i} (x_i - x_j)^{-1} \right] \text{ and } f[x_1, \dots, x_{k+1}] = \sum_{m=1}^{k+1} \left[f(x_m) \prod_{\ell \neq m} (x_m - x_\ell)^{-1} \right].$$

Recall the recursive formula that defines the divided difference:

$$f[x_0, \dots, x_{k+1}] = \frac{f[x_1, \dots, x_{k+1}] - f[x_0, \dots, x_k]}{x_{k+1} - x_0}.$$

Substituting our induction hypothesis into this, we recover precisely the formula we want for $f[x_0, \dots, x_{k+1}]$. To avoid cumbersome notation, I will not use a chain of equations but instead directly compute the coefficient of $f(x_i)$. For $f(x_0)$, since it is only determined by $-f[x_0, \dots, x_k]$, we have coefficient

$$-\frac{\prod_{j=1}^k (x_0 - x_j)^{-1}}{x_{k+1} - x_0} = \prod_{j \neq 0} (x_0 - x_j)^{-1}.$$

Similarly, the coefficient of $f(x_{k+1})$ is only determined by $f[x_1, \dots, x_{k+1}]$ so it is

$$\frac{\prod_{\ell=0}^k (x_{k+1} - x_\ell)^{-1}}{x_{k+1} - x_0} = \prod_{\ell \neq k+1} (x_{k+1} - x_\ell)^{-1}.$$

For other terms, i.e., $f(x_i)$ with $1 \leq i \leq k$, the coefficient is determined by both $f[x_0, \dots, x_k]$ and $f[x_1, \dots, x_{k+1}]$:

$$\frac{\prod_{\ell=1, \ell \neq i}^{k+1} (x_i - x_\ell)^{-1} - \prod_{j=0, j \neq i}^k (x_i - x_j)^{-1}}{x_{k+1} - x_0}$$

and writing the difference in terms of common denominator gives

$$((x_i - x_0) - (x_i - x_{k+1})) \prod_{\substack{j=0 \\ j \neq i}}^{k+1} (x_i - x_j)^{-1} \cdot (x_{k+1} - x_0)^{-1} = \prod_{\substack{j=0 \\ j \neq i}} (x_i - x_j)^{-1}.$$

This shows that all coefficients match, and we are done with our induction hypothesis. The claim follows. \square

Problem 5

(a) Suppose A is an $m \times n$ matrix. Show that for any $x \in \mathbb{C}^m$, AA^+x is the best approximation of x (w.r.t. $\|\cdot\|_2$) in the column space of A .

(b) Show that if $\{u_1, u_2, \dots\}$ is an orthonormal basis for an inner-product space E , then

$$P_n f := \sum_{i=1}^n \langle f, u_i \rangle u_i$$

is the best approximation of f in $U_n := \text{span}\{u_1, \dots, u_n\}$.

Proof.

(1) Recall (from a theorem proven in class) that the minimal solution to $Ay = x$ is given by $y = A^+x$. Therefore $x - Ay$ attains minimal 2-norm when $y = A^+x$ i.e., $Ay = AA^+x$ is the best approximation of x in the column space of A .

(2) We first show that $f - P_n f$ is orthogonal to $P_n f$. In particular, we show that $f - P_n f$ is orthogonal to all u_i for $1 \leq i \leq n$ (so that it must be orthogonal to everything in $\text{span}\{u_1, \dots, u_n\}$, in which there lies $P_n f$).

$$\langle f - P_n f, u_i \rangle = \langle f, u_i \rangle - \langle P_n f, u_i \rangle = \langle f, u_i \rangle - \langle \sum_{i=1}^n \langle f, u_i \rangle u_i, u_i \rangle = \langle f, u_i \rangle - \langle f, u_i \rangle = 0$$

(since if $i \neq j$ then $\langle \langle f, u_j \rangle u_j, u_i \rangle = \langle f, u_j \rangle \langle u_j, u_i \rangle = 0$). Now, if we have $P_n f' \in \text{span}\{u_1, \dots, u_n\}$, then

$$\underbrace{(f - P_n f)}_{\in \text{span}^{\perp}} \perp \underbrace{(P_n f - P_n f')}_{\in \text{span}} \implies \|f - P_n f'\|^2 = \|f - P_n f\|^2 + \|P_n f - P_n f'\|^2 \geq \|f - P_n f\|^2,$$

proving the minimality of $\|f - P_n f\|$. □