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Problem 1

Prove that if the eigenvalues of A satisfy ∣λ1∣ > ∣λi∣ for all other i’s then

λ1 = lim
m→∞

tr(Am+1)/tr(Am).

Proof. Notice that if λ is an eigenvalue of A, then λk is one of Ak, and they correspond to the same eigenvector
x:

Akx = Ak−1(Ax) = λAk−1x = λAk−2(Ax) = ... = λkx.

Therefore tr(Ak) = λk
1 + λk

2 + ... + λk
n. It follows that

lim
m→∞

tr(Am+1)
tr(Am)

= lim
m→∞

λm+1
1 + ... + λm+1

n

λm
1 + ... + λm

n

= lim
m→∞

[λ1 +
(λ1 − λ2)λm

2 + ... + (λ1 − λn)λm
n

λm
1 + ... + λm

n

]

where the large fraction tends to 0 as m→∞ because (λi/λ1)m → 0 for all i ⩾ 2. Therefore the limit is λ1.

Problem 2

(a) Prove that if Am×n is of rank n then A∗A is nonsingular.
(b) Prove that if Am×n is of rank n then A∗A is Hermitian and positive definite.
(c) Prove that if Am×n is of rank n then A+ = (A∗A)−1A∗. In the proof please clarify the size of matrices

at each step.

Proof.
(a) If A∗Ax = 0 then in particular x∗A∗Ax = 0, and so

0 = x∗A∗Ax = ⟨Ax,Ax⟩ = ∥Ax∥2

which implies Ax = 0. But since A has full column rank, this implies x = 0. Thus A∗A is invertible.
(b) That A∗A is Hermitian is trivial: (A∗A)∗ = A∗A∗∗ = A∗A. For positive definiteness:

x∗A∗Ax = ⟨Ax,Ax⟩ = ∥Ax∥2 ⩾ 0,

and since it is of full column rank, 0 can be obtained if and only if x = 0.
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(c) For this one, it suffices to check that (A∗A)−1A∗ satisfies all Penrose properties:

Am×n[(A∗A)−1A∗]n×mAm×n = Am×n (A∗A)−1(A∗A)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=In×n

= A (1)

[(A∗A)−1A∗]n×mAm×n[(A∗A)−1A∗]n×m = (A∗A)−1n×n (A∗A)(A∗A)−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

In×n

A∗n×m = (A∗A)−1A∗ (2)

(Am×n[(A∗A)−1A∗]n×m)∗ = A∗∗m×n((A∗A)−1)∗n×nA∗

= Am×n((A∗A)∗)−1n×nA∗

[2(b): A∗A Hermitian] = A((A∗A)∗)−1A = Am×n[(A∗A)−1A∗]n×m. (3)

I∗n×n = ([(A∗A)−1A∗]n×mAm×n)∗ = A∗n×mA∗∗m×n((A∗A)−1)∗n×n = A∗A(A∗A)−1 = In×n. (4)

Problem 3

Let ∥A∥2 denote the matrix norm subordinate to the Euclidean 2-norm. Let the singular values of A be
σ1 ⩾ σ2 ⩾ ... ⩾ σn. Prove that ∥A∥2 = σ1.

Proof. First notice that if U is any unitary matrix then for x, a vector of corresponding size, ∥Ux∥ = ∥x∥. Indeed,

∥Ux∥2 = ⟨Ux,Ux⟩ = ⟨x,U∗Ux⟩ = ⟨x,x⟩ = ∥x∥2

(so it holds in particular for ∥ ⋅ ∥2). Now let A = UΣV T be the singular value decomposition of A. It follows that

∥A∥2 = sup
∥x∥2=1

∥Ax∥2 = sup
∥x∥2=1

∥UΣV Tx∥2

= sup
∥x∥2=1

∥DQx∥2 (U unitary)

= sup
∥y∥2=1

∥Dy∥2 (y ∶= V Tx; V T unitary)

= ∥De(1)∥2 =
√

σ2
1 = ∣σ1∣ = σ1.

Problem 4

(a) Consider f(x) ∶= xm, m ∈ N. Show that

f[x0, ..., xn] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if n =m

0 if n >m.

Proof. (a) If we can prove that when n =m the divided difference is 1 then we are done, as

f[x0, ..., xm+1] =
f[x1, ..., xm+1] − f[x0, ..., xm]

xm+1 − x0
= 1 − 1
xm+1 − x0

= 0,
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and inductively one can show that the same holds for any n > m. But indeed this is true, since by the
MVT for divided difference, if x0, ..., xm ∈ [a, b] then

f[x0, ..., xm] =
f (m)(ξ)

m!
for some ξ ∈ [a, b].

On the other hand, regardless of the value of ξ, the mth order derivative of ξm is m(m − 1)... =m!, so the
fraction simplifies nicely to 1, proving our claim.

(b) We approach this identity by induction. The base case is obviously true:

f[x0] = f(x0) =
0

∑
i=0

⎡⎢⎢⎢⎣
f(xi)∏

j≠i
(xi − xj)−1

⎤⎥⎥⎥⎦
.

Now for the inductive step, we suppose that the equation holds for any divided difference with k indeter-
minate, that is, we have

f[x0, ..., xk] =
k

∑
i=0

⎡⎢⎢⎢⎣
f(xi)∏

j≠i
(xi − xj)−1

⎤⎥⎥⎥⎦
and f[x1, ..., xk+1] =

k+1
∑
m=1
[f(xm)∏

ℓ≠m
(xm − xℓ)−1] .

Recall the recursive formula that defines the divided difference:

f[x0, ..., xk+1] =
f[x1, ..., xk+1] − f[x0, ..., xk]

xk+1 − x0
.

Substituting our induction hypothesis into this, we recover precisely the formula we want for f[x0, ..., xk+1].
To avoid cumbersome notation, I will not use a chain of equations but instead directly compute the
coefficient of f(xi). For f(x0), since it is only determined by −f[x0, ..., xk], we have coefficient

−
∏k

j=1(x0 − xj)−1

xk+1 − x0
=∏

j≠0
(x0 − xj)−1.

Similarly, the coefficient of f(xk+1) is only determined by f[x1, ..., xk+1] so it is

∏k
ℓ=0(xk+1 − xℓ)−1

xk+1 − x0
= ∏

ℓ≠k+1
(xk+1 − xℓ)−1.

For other terms, i.e., f(xi) with 1 ⩽ i ⩽ k, the coefficient is determined by both f[x0, ..., xk] and
f[x1, ..., xk+1]:

∏k+1
ℓ=1,ℓ≠i(xi − xℓ)−1 −∏k

j=0,j≠i(xi − xj)−1

xk+1 − x0

and writing the difference in terms of common denominator gives

((xi − x0) − (xi − xk+1))
k+1
∏
j=0
j≠i

(xi − xj)−1 ⋅ (xk+1 − x0)−1 =∏
j=0
j≠i

(xi − xj)−1.

This shows that all coefficients match, and we are done with our induction hypothesis. The claim follows.
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Problem 5

(a) Suppose A is an m×n matrix. Show that for any x ∈ Cm, AA+x is the best approximation of x (w.r.t.
∥ ⋅ ∥2) in the column space of A.

(b) Show that if {u1, u2, ...} is an orthonormal basis for an inner-product space E, then

Pnf ∶=
n

∑
i=1
⟨f, ui⟩ui

is the best approximation of f in Un ∶= span{u1, ..., un}.

Proof.
(1) Recall (from a theorem proven in class) that the minimal solution to Ay = x is given by y = A+x.
Therefore x −Ay attains minimal 2-norm when y = A+x i.e., Ay = AA+x is the best approximation of x in
the column space of A.

(2) We first show that f − Pnf is orthogonal to Pnf . In particular, we show that f − Pnf is orthogonal
to all ui for 1 ⩽ i ⩽ n (so that it must be orthogonal to everything in span{u1, ..., un}, in which there lies
Pnf).

⟨f − Pnf, ui⟩ = ⟨f, ui⟩ − ⟨Pnf, ui⟩ = ⟨f, ui⟩ − ⟨
n

∑
i=1
⟨f, ui⟩ui, ui⟩ = ⟨f, ui⟩ − ⟨f, ui⟩ = 0

(since if i ≠ j then ⟨⟨f, uj⟩uj , ui⟩ = ⟨f, uj⟩ ⟨uj , ui⟩ = 0). Now, if we have Pnf
′ ∈ span{u1, ..., un}, then

(f − Pnf)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈span⊥

⊥ (Pnf − Pnf
′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈span

Ô⇒ ∥f − Pnf
′∥2 = ∥f − Pnf∥2 + ∥Pnf − Pnf

′∥2 ⩾ ∥f − Pnf∥2,

proving the minimality of ∥f − Pnf∥.
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