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Pseudocode Programming, p.36

Implementation:

1 s = 1.0; // starting with exponent 0 (i.e. 2^0)

2 for k = 1:100

3 s = s/2; //keep decreasing the exponent by 1

4 t = s + 1.0;

5 if t <= 1.0 // detect the first time when 1.0+ eps =1.0

6 s = s*2;

7 k = k-1; //-1 to get exponent of eps

8 break

9 end

10 end

Result: k = 52 and the machine epsilon e = 2−52 ≈ 2.2204 ⋅ 10−16.

Problems from Textbook

Ex.2.1.4 Prove that 4/5 is not representable exactly on the MARC-32. What is the closest machine number? What is

the relative round-off error involved in storing this number on the MARC-32?

Solution

x ∶= 4/5 is not representable since 4/5 = (3/4) ⋅ (1 − 1/16) = (.1100 1100 . . . )2. The two nearby machine

numbers, each with 24 bits, are x′ ∶= (.1100 . . .1100)2 and x′′ ∶= (.1100 . . .1101)2. Since they differ by

2−24 and

x − x′ = (.1100 1100 . . . )2 ⋅ 2
−24

=
4

5
⋅ 2−24

we know x′′ − x = (1 − 4/5) ⋅ 2−24 = 2−24/5. Therefore fl(x) ∶= x′′ = (.1100 . . .1101)2, and the relative

round-off error is
∣fl(x) − x∣

∣x∣
=
2−24/5

4/5
= 2−26.
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Ex.2.1.9 Show that fl(xk) = xk(1 + δ)k−1 with ∣δ∣ ⩽ ε, if x is a floating-point machine number in a computer with unit

round-off ε.

Solution

Similar to the example of
n

∑
i=0

xi earlier in the textbook, here we recursively define Sn ∶= xSn−1 with

S1 = x and S∗n+1 ∶= fl(S∗nx) with the exception S∗1 = x since x is itself a machine number. In addition

we define
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ρn ∶=
S∗n − Sn

Sn
Ô⇒ S∗n = Sn(1 + ρn), and

δn ∶=
S∗n+1 − S

∗

nx

S∗nx
Ô⇒ S∗n+1 = S

∗

nx(1 + δn).

Then,

1 + ρn+1 = 1 +
S∗n+1 − Sn+1

Sn+1
=
S∗n+1
Sn+1

=
S∗nx(1 + δn)

Snx
(properties of δn and Sn+1)

=
Snx(1 + ρn)(1 + δn)

Snx
(property of ρn)

= (1 + ρn)(1 + δn).

Therefore we have (1 + ρk) = (1 + ρk−1)(1 + δk−1) = ⋅ ⋅ ⋅ = (1 + ρ1)
k−1

∏
i=1

(1 + δi). Recall that x is a machine

number so S∗1 = S1 = x Ô⇒ ρ1 = 0. It follows that

fl(xk) = xk(1 + ρk) = xk(1 + δ)k−1 for ∣δ∣ ⩽ ε.

(Update: after finishing Ex.2.1.30, it seems like the ρn’s and δn’s are not necessary in this proof. One

can show inductively that fl(x) = x and fl(xn) = fl[fl(xn−1)x] = xn(1+ δ)n−1. For more details about

the induction, see Ex.2.1.30.)

Ex.2.1.10 Show by examples that often fl[fl(xy)z] ≠ fl[x fl(yz)] for machine numbers x, y, and z. This phenomenon is

often described informally by saying machine multiplication is not associative.

Solution

Consider a, b, c where b is small and c large but their exponent’s product is near 0. For example, let

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x ∶= (.10 . . .0)2 ⋅ 2
−2 = 2−3,

y ∶= (.10 . . .0)2 ⋅ 2
−127 = 2−128, and

z ∶= (.11 . . .1)2 ⋅ 2
127 = 2127 − 2103.

It follows that (x ⋅ y) = 2−131 which causes an underflow and is therefore 0, so fl[fl(xy)z] = 0. On the
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other hand,

fl[x fl(yz)] = fl[x fl(2−1 − 2−25)]

= fl[2−3(2−1 − 2−25)]

= (.10 . . .0)2 ⋅ 2
−4.

Ex.2.1.20 Let x = 23+2−19+2−22. Find the machine numbers on MARC-22 that are just to the right and just to the left of

x. Determine fl(x), the absolute error ∣x − fl(x)∣, and the relative error ∣x − fl(x)∣/∣x∣. Verify that the relative

error in this case does not exceed 2−24.

Solution

First we write x in normalized scientific notation:

23 + 2−19 + 2−22 = (2−1 + 2−23 + 2−26) ⋅ 24 = (.100 . . .010 01)2 ⋅ 2
4 (bold = in first 24 terms)

From this we see that the truncation would give x′ = (.100 . . .010)2 ⋅ 2
4 whereas rounding would give

x′′ = (.100 . . .011)2 ⋅ 2
4. They differ by 2−24 ⋅ 24 = 2−20. Now we determine which one is fl(x):

x − x′ = ((.01)2 ⋅ 2
−24

) ⋅ 24 = 2−22 Ô⇒ x′′ − x = ((.11) ⋅ 2−25) ⋅ 24 = 3 ⋅ 2−22.

Clearly in this case fl(x) = x′ the truncation. The absolute error is 2−22 as shown above, and the

relative error is

∣
2−22

23 + 2−19 + 2−22
∣ = ∣

2−22

2−22(225 + 23 + 1)
∣ =

1

225 + 23 + 1
<

1

224
.

Ex.2.1.24 Which of these is not necessarily true on the MARC-32? (Here x, y, z are machine numbers and ∣δ∣ ⩽ 2−24.)

(a) fl(xy) = xy(1 + δ) (b) fl(x + y) = (x + y)(1 + δ) (c) fl(xy) = xy/(1 + δ)

(d) ∣fl(xy) − xy∣ ⩽ ∣xy∣2−24 (e) fl(x + y + z) = (x + y + z)(1 + δ).

Solution

(a) True. Since x, y are machine numbers, fl(x) = x = x(1 + δx) and fl(y) = y = y(1 + δy) imply

δx = δy = 0. Then by definition

fl(xy) = fl[fl(x)fl(y)] = [x(1 + δx)y(1 + δy)](1 + δ∗) = xy(1 + δ∗).

(b) True. Similar to above,

fl(x + y) = fl[fl(x) + fl(y)] = [x(1 + δx) + y(1 + δy)](1 + δ∗) = (x + y)(1 + δ∗).

(c) True. By (a), fl(xy) = xy(1 + δ1) with ∣δ1∣ ⩽ 2−24. Now if we simply define

1 + δ ∶=
1

1 + δ1
Ô⇒ δ =

−δ1
1 + δ1
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we see fl(xy) = xy/(1 + δ). Indeed,

∣δ∣ = ∣
δ1

1 + δ1
∣ ∼ ∣−δ∣ ⩽ 2−24.

Remark

A second thought on this problem: Taylor expansion is not sufficient to prove the claim.

It is not trivial to show that ∣δ/(1 + δ)∣ < ε. For example, if δ = −ε, we immediately see

that ∣−ε/(1−ε)∣ > ε. In fact, when δ < 0 and ∣δ∣ is sufficiently close to ε, we also have “>” as

opposed to “<”. Since if δ > 0 the inequality ∣δ/(1 + δ)∣ < ε holds, we will only be focusing

on cases where δ < 0, specifically when ∣δ∣ is very close to ε.

First claim: in fact we can replace ∣δ∣ ⩽ ε with the stronger statement ∣δ∣ < ε. Recall

equation (6) on page 32, the definition of relative error:

∣
x − fl(x)

x
∣ ⩽

2m−25

q ⋅ 2m
=
2−25

q
⩽
2−25

1/2
= 2−24.

Notice that the two “⩽” ’s cannot attain “=” ’s simultaneously. The second one requires

q = 1/2 (so x must be a machine number), whereas the first requires x to be precisely

between the values from chopping and from rounding up (so x cannot be a machine

number). Therefore we claim that ∣δ∣ < ε.

The next thing to notice is that the mantissa of xy contains < 48 digits. Indeed, after

normalizing both, we have mantissas (exponents simply add up so they don’t matter here)

(.x1x2 . . . x24)2 and (.y1y2 . . . y24)2. The smallest term in their product that can possibly

be nonzero is 2−48x24y24, and the largest one is 2−2x1y1.

Recall we said that we will be focusing on δ’s very close to −ε. Let r ∶= ∣δ∣/ε. We want to

find r such that whenever ∣δ∣ < rε, the “<” of the original inequality holds:

rε

1 − rε
< ε Ô⇒

2−24r

1 − 2−24r
< 2−24

Ô⇒
r

1 − 2−24r
< 1

Ô⇒ r < 1 − 2−24r

Ô⇒ r <
1

1 + 2−24
.

Is it possible to store a 48-digit mantissa into MARK-32 with an relative error > ε/(1+2−24)?

The answer is no. The largest possible relative round-off error happens when the 25th to

48th digits is closest to 100 . . . (when round-off error is maximized), i.e., when the 25th

and 48th digits are 1 and all other digits are 0. In this case, focusing on mantissa only and

ignoring the exponent, the ratio between round-off error and 2−25 is 1−2−48/2−25 = 1−2−23,

still less than r. Therefore no 48-digit mantissa could potentially provide a counterexample

to ∣δ(1 + δ)∣ < ε, and thus (c) is indeed true.
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(d) True. This is trivial when xy = 0. Otherwise, by (a), fl(xy) − xy = xyδ ⩽ xy2−24 and so

fl(xy) − xy
xy

⩽ 2−24 Ô⇒
∣fl(xy) − xy∣

∣xy∣
⩽ 2−24

and the claim follows.

(e) Not necessarily true. Setting y = z = x we see (by the theorem in the chapter) that we instead

need (1 + 3δ) to bound the error.

Ex.2.1.26 Which of these is a machine number on the MARC-32?

(i) 1040 (ii) 2−1 + 2−26 (iii)
1

5
(iv)

1

3
(v)

1

256

Solution

(i) No, because this number will cause an overflow (> 1038).

(ii) No, because its mantissa in normalized scientific notation contains 26 digits.

(iii) No, because 1/5 = (3/16)/(1 − 1/16) = (.0011 0011 . . . )2, an infinite binary expansion.

(iv) No, because 1/3 = (1/4)/(1 − 1/4) = (.01 01 . . . )2, also an infinite binary expansion.

(v) Yes, obviously; 1/256 = 2−8 = (.100 . . . )2 ⋅ 2
−7.

Ex.2.1.30 What relative round-off error is possible in computing the product of n machine numbers in MARK-32? How

is your answer changed if n numbers are not necessarily machine numbers but are within the range of the

machine?

Solution

If x1, . . . , xn are all machine numbers, inductively we have fl(x1) = x1(1+ δ1)0 (so the relative error ⩽ ε

and

fl(
k

∏
i=1

xi) = fl[fl(
k−1

∏
i=1

xi) ⋅ xk] = (
k−1

∏
i=1

xi)(1 + δi)
k−2

(xk)(1 + δk−1) ⩽ (
k

∏
i=1

xi)(1 + δ̃)
k−1.

where δ̃ ∶= max{δ1, . . . , δk−1}. Immediately we see ∣δ̃∣ ⩽ ε. The relative round-off error is therefore

∣(1 + δ)k−1 − 1∣ ∼ ∣(n − 1)δ∣ ⩽ (n − 1)ε = (n − 1)2−24.

On the other hand, if x1, . . . , xn are not necessarily machine numbers, we consider the worst case

scenario where none of them are. For the calculations below, we drop the cumbersome subscripts of

5



MATH 501 Problem Set 1 YQL

δ’s — they don’t matter anyway, since at the end we’ll bound all of them by ε. Then:

fl(x1) = x1(1 + δ)

fl(x1x2) = fl[fl(x1)fl(x2)]

= fl[(x1)(1 + δ)(x2)(1 + δ)]

= (x1x2)(1 + δ)
3

fl(x1x2x3) = fl[fl(x1x2)fl(x3)]

= fl[(x1x2)(1 + δ)3(x3)(1 + δ)]

= (x1x2x3)(1 + δ)
5

⋯

Inductively, fl(
n

∏
k=1

xk) = (
n

∏
k=1

xk)(1 + δ)
2n−1.

Therefore the relative round-off error is bounded by ∣(1+δ)2n−1−1∣ ∼ ∣(2n−1)δ∣ ⩽ (2n−1)ε = (2n−1)2−24.

Ex.2.1.31 Give examples of real numbers x and y for which fl(x ⊙ y) ≠ fl(fl(x) ⊙ fl(y)). Illustrate all four arithmetic

operations using a five-decimal machine.

Solution

WLOG assume the machine is with a decimal system.

(1) +: consider x = y ∶= .100004 (both with ⋅100 so it doesn’t matter). Then,

fl(x + y) = fl(.200008) = .20001, but (round up)

fl(fl(x) + fl(y)) = fl(.10000 + .10000) = .20000. (chop both individually)

(2) −: consider x ∶= .200006 and y ∶= .100002. Then,

fl(x − y) = fl(.100004) = .10000, but (chop)

fl(fl(x) − fl(y)) = fl(.20001 − .10000) = .10001. (round x up; chop y)

(3) ∗(multiplication): consider x = y ∶= .900005. Then,

fl(xy) = fl(.81000 9 . . . ) = .81001, but (round up)

fl(fl(x)fl(y)) = fl(.900012) = fl(.81001 8 . . . ) = .81002. (round up x, y, & fl(x)fl(y))

(4) ÷: consider x ∶= .800004 and y ∶= .899995. Then,

fl(x/y) = fl(.88889 8 . . . ) = .88890, but (round up)

fl(fl(x)/fl(y)) = fl(.8/.9) = fl(.88888 8 . . . ) = .88889. (chop, then round *2)
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