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5.2.4 Prove that if A is Hermitian, then the deflation technique in the text will produce a Hermitian matrix.

Proof. Since A is Hermitian, A = A∗. Therefore

(UAU∗)∗ = U∗∗A∗U∗ = UA∗U∗ = UAU∗,

i.e., the “bigger matrix” containing the deflation matrix Â is Hermitian. Since Â and A share the same
diagonal, it is therefore also Hermitian.

5.2.6 A normal matrix is one that commutes with it conjugate transpose: AA∗ = A∗A. Prove that if A is normal
then so is A − λI for any scalar λ.

Proof. Notice that we have (A − λI)∗ = A∗ − λI. Thus,

(A − λI)∗(A − λI) = (A∗ − λI)(A − λI) = A∗A − λA∗ − λA + ∣λ∣2I

= (A − λI)(A∗ − λI) = (A − λI)(A − λI)∗.

5.2.7 Suppose that A is normal and that x and y are eigenvectors of A corresponding to different eigenvalues. Prove
that x∗y = 0.

Proof. Suppose Ax = λ1x for x ≠ 0. From above we know that (A − λ1I) is normal, and thus

∥(A − λ1I)x∥ = x∗(A − λ1I)∗(A − λ1I)x = x∗(A − λ1I)(A − λ1I)∗x = ∥(A − λ1I)∗x∥

for all x. This means that (A − λ1I)∗x = (A∗ − λ1I)x = 0 and thus x is also an eigenvalue of A∗ with
eigenvector λ1. Now suppose also Ay = λ2y with λ1 ≠ λ2. We have A∗y = λ2y and

(λ1 − λ2)(x∗y) = λ1x
∗y − x∗λ2y = (λ1x)∗y − x∗(λ2y)

= (A∗x)∗y − x∗(Ay) = x∗Ay − x∗Ay = 0.

Since λ1 ≠ λ2, we conclude that x∗y = 0.

5.2.8 Prove that if A then A and A∗ have the same eigenvectors.

Proof. This has been shown in 5.2.7.

5.2.10 Prove that if x and y are points in Cn having the same Euclidean norm, then there is a unitary matrix U

such that Ux = y.

5.2.15 Prove that if A is a diagonal matrix, then ∥A∥2 = max
1⩽i⩽n

∣ai,i∣.
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Proof. Suppose ak,k is the largest diagonal entry. Then

∥A∥2 = sup
∥x∥2=1

∥Ax∥2 = sup
∥x∥2=1

(
n

∑
i=1

a2i,ix
2
i)

1/2

⩽ sup
∥x∥2=1

(
n

∑
i=1

a2k,kx
2
i)

1/2

⩽ sup
∥x∥2=1

∣ak,k ∣ (
n

∑
i=1

x2
i)

1/2

= ∣ak,k ∣ sup
∥x∥2=1

∥x∥2 = ∣ak,k ∣.

5.2.16 Prove that for any square matrix A, ∥A∥22 ⩽ ∥A∗A∥2.

Proof. Notice that by SVD, for x with ∥x∥2 = 1,

sup
∥x∥2=1

∥Ax∥2 = sup
∥x∥2=1

∥UΣV Tx∥2 = sup
∥x∥2=1

∥ΣV Tx∥2 = sup
∥y∥2=1

∥Σy∥2

since U and V T are unitary and so ∥v∥ = ∥Uv∥ = ∥V T v∥. It follows that ∥Σy∥2 can be maximized when
y = e(1), and when this happens the norm evaluates to the largest singular value σ1 of A. Thus ∥A∥22 = σ2

1 ,
and it is clear that ∥A∗A∥2 is also σ2

1 . Therefore they are equal and the inequality provided in the problem
is trivially true.

5.2.20 Prove that if the eigenvalues of A satisfy ∣λ1∣ > ∣λi∣ for i = 2,3, . . . , n, then

λ1 = lim
m→∞

tr(Am+1)/tr(Am).

Proof. Assuming that we can take it for granted that the trace of A is the sum of eigenvalues, the expression
is equivalent to

λ1 = lim
m→∞

λm+1
1 + ⋅ ⋅ ⋅ + λm+1

n

λm
1 + ⋅ ⋅ ⋅ + λm

n

, or lim
m→∞

(λ1 − λ2)λm
2 + ⋅ ⋅ ⋅ + (λ1 − λn)λm

n

λm
1 + ⋅ ⋅ ⋅ + λm

n

= 0,

since the eigenvalues of Am are λm
1 , . . . , λm

n . Since λ1 is strictly larger than all other λi’s, as m →∞, the
ratio λm

i /λm
1 tends to 0, and the claim follows.

5.2.31 Find the Schur factorization UAU∗ = T for the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2.888 0.984 −1.440
1.184 3.312 −1.920
−0.160 2.120 −0.200

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Solution

One eigenvalue of this matrix is λ1 = 1 with unit eigenvector x ∶= [0.36 0.48 0.8]T . Consider

α =
√
2

∥x − e(1)∥
= 5

4
and v = α(x − e(1)) = [−0.8 0.6 1]T .
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Define U ∶= I − vv∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.36 0.48 0.8

0.48 0.64 −0.6
0.8 −0.6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and we have obtained Schur’s factorization on this matrix:

UAU∗ ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 −1
0 3 1

0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

5.2.38 Use Gershgorin’s Theorem to prove that a diagonally dominant matrix does not have zero as an eigenvalue
and is therefore nonsingular.

Proof. The theorem says that if λ is an eigenvalue then it is in some Di centered at ai,i with radius∑
j≠i
∣ai,j ∣.

By diagonal dominance, ∣ai,i∣ > ∑
j≠i
∣ai,j ∣, so Di cannot contain the origin. Notice that all Di’s have this

property, and thus λ ≠ 0. Hence A is nonsingular.
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