

MATH 501 Homework 11

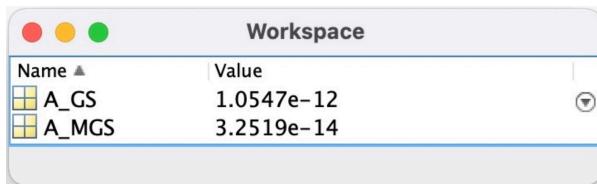
Qilin Ye, April 18, 2021

Pseudocode Implementation

```

1  A = zeros(20,10);
2  for i = 1:20
3      for j = 1:10
4          A(i,j) = ((2*i-21)/19)^(j-1);
5      end
6  end
7  B = Gram_Schmidt(A);
8  C = Modified_Gram_Schmidt(A);
9  A_GS = norm(B.'*B - eye(10));
10 A_MGS = norm(C.'*C - eye(10));
11
12 u = zeros(50,1);
13 v = zeros(50,1);
14
15 for i = 1:250
16     M = rand(20,10);
17     M_GS = Gram_Schmidt(M);
18     M_MGS = Modified_Gram_Schmidt(M);
19     u(i) = norm(M_GS.' * M_GS - eye(10));
20     v(i) = norm(M_MGS.' * M_MGS - eye(10));
21 end
22 (Some extra code to generate graphs)

```

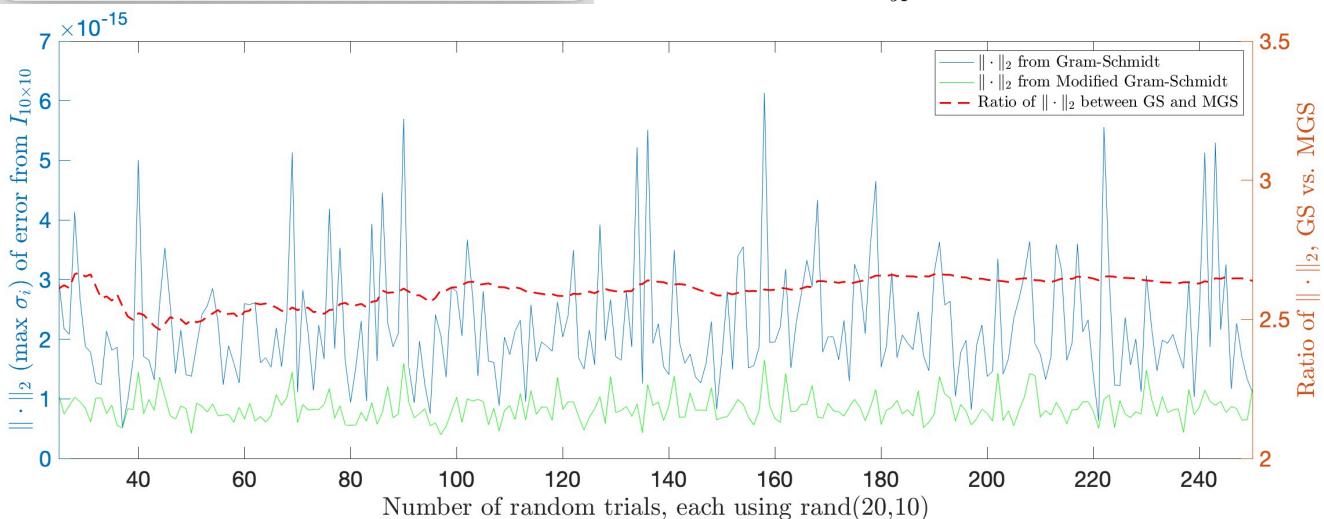


```

1  function B = Gram_Schmidt(A)
2  B = zeros(20,10);
3  C = zeros(20,10);
4  T = zeros(20,10);
5  for j = 1:10
6      for i = 1:j-1
7          T(i,j) = dot(A(1:20,j),B(1:20,i));
8      end
9      C(1:20,j) = A(1:20,j);
10     for i = 1:j-1
11         C(1:20,j) = C(1:20,j) - T(i,j) * B(1:20,i);
12     end
13     T(j,j) = norm(C(1:20,j));
14     B(1:20,j) = C(1:20,j) / T(j,j);
15 end
16
17 function A = Modified_Gram_Schmidt(A)
18     T = zeros(20,10);
19     for k = 1:10
20         A(1:20,k) = A(1:20, k) / norm(A(1:20,k));
21         for j = k+1:10
22             A(1:20,j) = A(1:20,j) - dot(A(1:20,k),
23                 A(1:20,j)) * A(1:20,k);
24         end
25     end

```

The $*$ differs from the book's \cdot ; I believe the book has made a typo there.



Textbook Problems

5.3.3 Prove that if $A_{m \times n}$ is of rank n then $A^* A$ is Hermitian and positive definite.

Proof. If A is of rank n then $Ax = 0$ if and only if $x = 0$. Thus for nonzero x ,

$$x^* A^* A x = (Ax)^* (Ax) = \|Ax\|^2 > 0.$$

That $A^* A$ is Hermitian doesn't even require A to be rank n . It just follows directly from

$$(A^* A)^* = A^* A^{**} = A^* A. \quad \square$$

5.3.6 Let $\{u_1, \dots, u_n\}$ be an orthonormal basis for a subspace U of an inner product space X . Define $P : X \rightarrow U$ by

$$P(x) = \sum_{i=1}^n \langle x, u_i \rangle u_i.$$

Prove that

- (1) P is linear,
- (2) P is idempotent,
- (3) $Px = x$ if $x \in U$, and
- (4) $\|Px\|_2 \leq \|x\|_2$ for all $x \in X$.

Proof. (1) Linearity directly follows from the fact that inner product itself is a linear mapping (and of course finite sums don't spoil the linearity).

(2) This follows from (3) as $P^2 x = P(Px) = P(v)$ for some $v \in U$. So we'll only show (3).

(3) If $x \in U$ then $x = \sum_{i=1}^n c_i u_i$ for some $\{c_i\}_{i=1}^n$. Thus,

$$\begin{aligned} P(x) &= \sum_{i=1}^n \langle x, u_i \rangle u_i = \sum_{i=1}^n \left[\left\langle \sum_{j=1}^n c_j u_j, u_i \right\rangle u_i \right] \\ &= \sum_{i=1}^n \left[\sum_{j=1}^n \langle c_j u_j, u_i \rangle u_i \right] = \sum_{i=1}^n \sum_{j=1}^n c_j \langle u_j, u_i \rangle u_i \\ &= \sum_{i,j=1}^n c_j \delta_{i,j} u_i = \sum_{k=1}^n c_k u_k = x. \end{aligned}$$

(4) Since the question asks about $\|\cdot\|_2$ I shall assume that X can be identified with \mathbb{R}^m for some m . Then we are able to extend $\{u_1, \dots, u_n\}$ to $u_1, \dots, u_n, \dots, u_m$ which forms an orthonormal basis for X . Then the claim becomes clear:

$$\|Px\|_2^2 = \left\| \sum_{i=1}^n \langle x, u_i \rangle u_i \right\|_2^2 = \sum_{i=1}^n \langle x, u_i \rangle^2 \leq \sum_{i=1}^m \langle x, u_i \rangle^2 = \|x\|_2^2.$$

\square

5.3.17 Prove that if Q is unitary then for all x, y ,

$$\|x\|_2 = \|Qx\|_2 \text{ and } \langle x, y \rangle = \langle Qx, Qy \rangle.$$

Also compute $\|Q\|_2$ using the matrix norm subordinate to the Euclidean norm.

Proof. For all x , $\|Qx\|_2^2 = \langle Qx, Qx \rangle = x^* Q^* Qx = x^* x = \|x\|_2$. To compute $\|Q\|_2$, on one hand we have

$$\|Qx\|_2 = \|x\|_2 \implies \|Q\|_2 \leq 1$$

and on the other hand, letting $\tilde{x} :=$ any eigenvector of Q gives $\|Q\tilde{x}\| = \|\tilde{x}\| \implies \|Q\|_2 \geq 1$. Thus $\|Q\|_2 = 1$. \square

5.3.19 Let A be an $m \times n$ matrix, b an m -vector, and $\alpha > 0$. Using the Euclidean norm, define

$$F(x) := \|Ax - b\|_2^2 + \alpha\|x\|_2^2.$$

Prove $F(x)$ is a minimum when x is a solution of the equation

$$(A^T A + \alpha I)x = A^T b.$$

Prove that when x is so defined,

$$F(x + h) = F(x) + (Ah)^T Ah + \alpha h^T h.$$

Proof. It suffices to prove the second claim directly, after which the first claim follows since

$$(Ah)^T Ah + \alpha h^T h = \|Ah\|_2^2 + \alpha\|h\|_2^2 \geq 0.$$

Indeed,

$$\begin{aligned} F(x + h) &= \|A(x + h) - b\|_2^2 + \alpha\|x + h\|_2^2 \\ &= \|Ax - b\|_2^2 + \|Ah\|_2^2 + 2\langle Ax - b, Ah \rangle + \alpha\|x\|_2^2 + \alpha\|h\|_2^2 + 2\alpha\langle x, h \rangle \\ &= \|Ax - b\|_2^2 + \|Ah\|_2^2 + 2\langle A^T(Ax - b), h \rangle + \alpha\|x\|_2^2 + \alpha\|h\|_2^2 + 2\alpha\langle x, h \rangle \\ &= F(x) + (Ah)^T Ah + \alpha h^T h + \underbrace{2\langle A^T(Ax - b), h \rangle + 2\langle \alpha Ix, h \rangle}_{=0 \text{ since } A^T(Ax - b) + 2\alpha Ix = 0}. \end{aligned} \quad \square$$

5.3.24 Show that in solving the least-squares problem for $Ax = b$, we can replace the normal equations by $CAx = Cb$ where C is any $n \times m$ matrix row-equivalent to A^T .

Proof. Indeed, we know that the least-squares solution to $Ax = b$ is the x that solves $A^T(Ax - b) = 0$. Since A^T and C are equivalent, $C = EA^T$ for some invertible invertible $n \times n$ matrix E . Hence x solves $A^T(Ax - b) = 0$ if and only if x solves $EA^T(Ax - b) = C(Ax - b) = 0$. \square

5.3.25 Let A be an $m \times n$ matrix of rank n . Let b be any point in \mathbb{R}^m . Show that the sets

$$K_\lambda := \{x \in \mathbb{R}^n : \|Ax - b\|_2 \leq \lambda\}$$

are closed and bounded.

Proof. Let $\lambda \geq 0$ be given and fix it. We first show the closure of K_λ . Suppose $(x_1, x_2, \dots) \subset K_\lambda$ converges to some $x \in \mathbb{R}^n$. By triangle inequality,

$$\|Ax - b\| \leq \|Ax - Ax_i\| + \|Ax_i - b\| \text{ for } x_i \in (x_1, x_2, \dots).$$

The first term on the RHS converges to 0 because A is a bounded operator (linear with finite-dimensional domain) and the second term $\leq \lambda$. Therefore the sum $\leq \lambda$, i.e., $x \in K_\lambda$.

For boundedness, suppose K_λ is unbounded so there exists $(x_1, x_2, \dots) \subset K_\lambda$ (most likely a different sequence from the one used previously...a bit of abuse of notation here) such that $\|x_k\| \geq k$. Triangle inequality gives

$\|Ax_k\| \leq \|Ax_k - b\| + \|b\|$. The RHS is bounded by some constant M in this case, so M must also bound the LHS. Thus $\|Ax_k\|$ is bounded for all $x_k \in (x_1, x_2, \dots)$. It follows that if we define the sequence (y_1, y_2, \dots) by

$$y_k := \frac{x_k}{\|x_k\|}$$

then $Ay_k = Ax_k/\|x_k\|$ converges to 0 (the numerator is bounded and the denominator $\rightarrow \infty$). Since (I hope this is allowed in 501) unit balls in finite-dimensional spaces (in particular \mathbb{R}^n) are compact, (y_1, y_2, \dots) admits a convergent subsequence that converges to some y with $\|y\| = 1$. But then $Ay = 0$ for some nonzero y , contradicting the assumption that A is of full column rank. Thus K_λ is bounded. \square

5.3.26 Assume the hypotheses in the preceding problem. Prove that if $\lambda = 2\|b\|_2$ then

$$\inf_{x \in \mathbb{R}^n} \|Ax - b\|_2 = \inf_{x \in K_\lambda} \|Ax - b\|_2.$$

Proof. That $\inf_{x \in \mathbb{R}^n} \|Ax - b\|_2 \leq \inf_{x \in K_\lambda} \|Ax - b\|_2$ is trivial, so it suffices to show that any $x \in \mathbb{R}^n \setminus K_\lambda$ has no effect on determining the infimum. Indeed, letting $x = 0$ tells us that the infimum of both sides are $\leq \|b\|_2$, so it suffices to check the infimum of all x 's with $\|Ax - b\|_2 \leq \|b\|_2$ which, of course, is contained in K_λ . (Not sure why the problem asked explicitly for $2\|b\|_2$ though...) \square

5.3.27 Show that if $A_{m \times n}$ is of rank n then the least-squares solution of $Ax = b$ satisfies the inequality

$$\|x\|_2 \leq 2\|b\|_2\|B\|_2$$

where B is any left inverse of A . Here $\|\cdot\|_2$ denotes the matrix norm subordinate to Euclidean $\|\cdot\|$.

Proof. If x solves $Ax = b$ then

$$\|x\|_2 = \|BAx\|_2 \leq \|B\|_2\|Ax\|_2 \leq 2\|B\|_2\|b\|_2. \quad \square$$

5.3.28 Let A be an $m \times n$ matrix of unspecified rank. Let $b \in \mathbb{R}^m$ and let

$$\rho := \inf_{x \in \mathbb{R}^n} \|Ax - b\|.$$

Prove that this infimum is attained, regardless of the rank of A and the choice of $\|\cdot\|$.

Proof. If A is of full column rank, by (a slight generalization of) 5.3.26 $\inf_{x \in \mathbb{R}^n} \|Ax - b\|$ is the same as $\inf_{x \in K_\lambda} \|Ax - b\|$ where $\lambda = 2\|b\|$ (the proof of the generalized version, i.e., without specifying $\|\cdot\|_2$, is identical to that of the case $\|\cdot\|_2$). Since the map $x \mapsto \|Ax - b\|$ is the composition of several continuous maps (namely the composition of $\|\cdot\|$ with the sum of $x \mapsto Ax$ and the constant b), it is also continuous. A closed and bounded set K_λ in a finite-dimensional space is compact, so its image must be compact as well. Therefore the infimum is attained.

Now suppose A ($m \times n$) is not of full column rank. Clearly if we swap the orders of the columns of A , the infimum is unaffected in either case (we can just swap the corresponding components of x as well). With that justified, assume all the pivot columns are aligned on the left side of A and suppose there are $k < n$ such columns. Now define $B_{n \times k}$ to be the left $n \times k$ sub-matrix of $I_{n \times n}$, i.e., the leftmost k columns of the $n \times n$ identity matrix. It follows that (1) A shares the same column space with AB and, more importantly,

(2) AB is of *full column rank*. Therefore there does exist $\tilde{x} \in \mathbb{R}^k$ such that

$$\inf_{x \in \mathbb{R}^k} \|ABx - b\| = \|AB\tilde{x} - b\|.$$

But we've said AB and A have the same column space, so $\inf_{x \in \mathbb{R}^k} \|ABx - b\| = \inf_{x \in \mathbb{R}^n} \|Ax - b\|$ and the infimum for the RHS can also be attained by $B\tilde{x} \in \mathbb{R}^n$. \square

5.3.29 Adopt the assumptions in the preceding problem and prove that the equation $A^T Ax = A^T b$ has a solution, regardless of the rank of A .

Proof. This problem amounts to showing that $A^T b$ lies inside the column space of $A^T A$. Since the double orthogonal complement of a closed subspace is simple the subspace itself (i.e., if U is a closed subspace then $(U^\perp)^\perp = U$), it suffices to show that $A^T b$ is orthogonal to everything inside $(C(A^T A))^\perp$ (the orthogonal complement of the column space of $A^T A$). Let $y \in (C(A^T A))^\perp$ be arbitrarily chosen. Then

$$y^T A^T A = 0 \implies y^T A^T A y = \|Ay\|^2 = 0 \implies Ay = 0 \implies y^T A^T b = 0,$$

i.e., y is indeed orthogonal to $A^T b$. Thus $A^T b \in C(A^T A)$, proving the claim. \square

5.3.42 Determine $\kappa_\infty(A)$ and $\kappa_\infty(A^* A)$ where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{bmatrix} \quad \text{and} \quad A^* A = \begin{bmatrix} 1 + \epsilon^2 & 1 & 1 \\ 1 & 1 + \epsilon^2 & 1 \\ 1 & 1 & 1 + \epsilon^2 \end{bmatrix}.$$

What happens as $\epsilon \rightarrow 0$?

Solution Recall [or not] that $\kappa_\infty(A) = \|A\|_\infty \|A^+\|_\infty$. Putting A and A^* into *WolframAlpha*, we have

$$A^+ = \frac{1}{\epsilon^2 + 3} \begin{bmatrix} 1 & (\epsilon^2 + 2)/\epsilon & -1/\epsilon & -1/\epsilon \\ 1 & -1/\epsilon & (\epsilon^2 + 2)/\epsilon & -1/\epsilon \\ 1 & -1/\epsilon & -1/\epsilon & (\epsilon^2 + 2)/\epsilon \end{bmatrix}$$

and

$$(A^* A)^{-1} = \frac{1}{\epsilon^4 + 3\epsilon^2} \begin{bmatrix} \epsilon^2 + 2 & -1 & -1 \\ -1 & \epsilon^2 + 2 & -1 \\ -1 & -1 & \epsilon^2 + 2 \end{bmatrix}.$$

Recall that $\|M_{n \times n}\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n |M_{i,j}|$ (the sum of entries of the row in which the sum of component-wise absolute values is the maximum). Now we compute $\kappa_\infty(A)$ and $\kappa_\infty(A^* A)$:

$$\kappa_\infty(A) = \|A\|_\infty \|A^+\|_\infty = 3 \cdot \frac{1 + \epsilon}{3 + \epsilon^2} = \frac{3 + \epsilon}{3 + \epsilon^2} \quad \text{and} \quad \lim_{\epsilon \rightarrow 0} \kappa_\infty(A) = \lim_{\epsilon \rightarrow 0} \frac{3 + \epsilon}{3 + \epsilon^2} = 1,$$

and

$$\kappa_\infty(A^* A) = (3 + \epsilon^2) \frac{\epsilon^2}{\epsilon^4 + 3\epsilon^2} = 1 \quad \text{and} \quad \lim_{\epsilon \rightarrow 0} \kappa_\infty(A^* A) = 1.$$