
MATH 501 Homework 11

Qilin Ye, April 18, 2021

Pseudocode Implementation

1 A = zeros(20,10);
2 for i = 1:20
3 for j = 1:10
4 A(i,j) = ((2*i-21)/19)^(j-1);
5 end
6 end
7 B = Gram_Schmidt(A);
8 C = Modified_Gram_Schmidt(A);
9 A_GS =norm(B.'*B - eye(10));

10 A_MGS =norm(C.'*C - eye(10));
11

12 u = zeros(50,1);
13 v = zeros(50,1);
14

15 for i = 1:250
16 M = rand(20,10);
17 M_GS = Gram_Schmidt(M);
18 M_MGS = Modified_Gram_Schmidt(M);
19 u(i) = norm(M_GS.' * M_GS - eye(10));
20 v(i) = norm(M_MGS.' * M_MGS - eye(10));
21 end
22 (Some extra code to generate graphs)

1 function B = Gram_Schmidt(A)
2 B = zeros(20,10);
3 C = zeros(20,10);
4 T = zeros(20,10);
5 for j = 1:10
6 for i = 1:j-1
7 T(i,j) = dot(A(1:20,j),B(1:20,i));
8 end
9 C(1:20,j) = A(1:20,j);

10 for i = 1:j-1
11 C(1:20,j) = C(1:20,j) - T(i,j) * B(1:20,i);
12 end
13 T(j,j) = norm(C(1:20,j));
14 B(1:20,j) = C(1:20,j) / T(j,j);
15 end
16 end
17 function A = Modified_Gram_Schmidt(A)
18 T = zeros(20,10);
19 for k = 1:10
20 A(1:20,k) = A(1:20, k) / norm(A(1:20,k));
21 for j = k+1:10
22 A(1:20,j) = A(1:20,j) - dot(A(1:20,k),

A(1:20,j)) * A(1:20,k);
23 end
24 end
25 end

The * differs from the book’s −1 ; I believe the book
has made a typo there.
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Textbook Problems

5.3.3 Prove that if Am×n is of rank n then A∗A is Hermitian and positive definite.

Proof. If A is of rank n then Ax = 0 if and only if x = 0. Thus for nonzero x,

x∗A∗Ax = (Ax)∗(Ax) = ∥Ax∥2 > 0.

That A∗A is Hermitian doesn’t even require A to be rank n. It just follows directly from

(A∗A)∗ = A∗A∗∗ = A∗A.

5.3.6 Let {u1, . . . , un} be an orthonormal basis for a subspace U of an inner product space X. Define P ∶X → U by

P (x) =
n

∑
i=1
⟨x,ui⟩ui.

Prove that

(1) P is linear,

(2) P is idempotent,

(3) Px = x if x ∈ U , and

(4) ∥Px∥2 ⩽ ∥x∥2 for all x ∈X.

Proof. (1) Linearity directly follows from the fact that inner product itself is a linear mapping (and
of course finite sums don’t spoil the linearity).

(2) This follows from (3) as P 2x = P (Px) = P (v) for some v ∈ U . So we’ll only show (3).

(3) If x ∈ U then x =
n

∑
i=1

ciui for some {ci}ni=1. Thus,

P (x) =
n

∑
i=1
⟨x,ui⟩ui =

n

∑
i=1

⎡⎢⎢⎢⎣
⟨

n

∑
j=1

cjuj , ui⟩ui

⎤⎥⎥⎥⎦

=
n

∑
i=1

⎡⎢⎢⎢⎣

n

∑
j=1
⟨cjuj , ui⟩ui

⎤⎥⎥⎥⎦
=

n

∑
i=1

n

∑
j=1

cj ⟨uj , ui⟩ui

=
n

∑
i,j=1

cjδi,jui =
n

∑
k=1

ckuk = x.

(4) Since the question asks about ∥ ⋅ ∥2 I shall assume that X can be identified with Rm for some m.
Then we are able to extend {u1, . . . , un} to u1, . . . , un, . . . , um which forms an orthonormal basis for
X. Then the claim becomes clear:

∥Px∥22 = ∥
n

∑
i=1
⟨x,ui⟩ui∥

2

2
=

n

∑
i=1
⟨x,ui⟩2 ⩽

m

∑
i=1
⟨x,ui⟩2 = ∥x∥22.

5.3.17 Prove that if Q is unitary then for all x, y,

∥x∥2 = ∥Qx∥2 and ⟨x, y⟩ = ⟨Qx,Qy⟩ .

Also compute ∥Q∥2 using the matrix norm subordinate to the Euclidean norm.

2



MATH 501 Problem Set 11 YQL

Proof. For all x, ∥Qx∥22 = ⟨Qx,Qx⟩ = x∗Q∗Qx = x∗x = ∥x∥2. To compute ∥Q∥2, on one hand we have

∥Qx∥2 = ∥x∥2 Ô⇒ ∥Q∥2 ⩽ 1

and on the other hand, letting x̃ ∶= any eigenvector of Q gives ∥Qx̃∥ = ∥x̃∥ Ô⇒ ∥Q∥2 ⩾ 1. Thus ∥Q∥2 = 1.

5.3.19 Let A be an m × n matrix, b an m-vector, and α > 0. Using the Euclidean norm, define

F (x) ∶= ∥Ax − b∥22 + α∥x∥22.

Prove F (x) is a minimum when x is a solution of the equation

(ATA + αI)x = AT b.

Prove that when x is so defined,

F (x + h) = F (x) + (Ah)TAh + αhTh.

Proof. It suffices to prove the second claim directly, after which the first claim follows since

(Ah)TAh + αhTh = ∥Ah∥22 + α∥h∥22 ⩾ 0.

Indeed,

F (x + h) = ∥A(x + h) − b∥22 + α∥x + h∥22

= ∥Ax − b∥22 + ∥Ah∥22 + 2 ⟨Ax − b,Ah⟩ + α∥x∥22 + α∥h∥22 + 2α ⟨x,h⟩

= ∥Ax − b∥22 + ∥Ah∥22 + 2 ⟨AT (Ax − b), h⟩ + α∥x∥22 + α∥h∥22 + 2α ⟨x,h⟩

= F (x) + (Ah)TAh + αhTh + 2 ⟨AT (Ax − b), h⟩ + 2 ⟨αIx,h⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 since AT (Ax−b)+2αIx=0

.

5.3.24 Show that in solving the least-squares problem for Ax = b, we can replace the normal equations by CAx = Cb

where C is any n ×m matrix row-equivalent to AT .

Proof. Indeed, we know that the least-squares solution to Ax = b is the x that solves AT (Ax − b) = 0.
Since AT and C are equivalent, C = EAT for some invertible invertible n × n matrix E. Hence x solves
AT (Ax − b) = 0 if and only if x solves EAT (Ax − b) = C(Ax − b) = 0.

5.3.25 Let A be an m × n matrix of rank n. Let b be any point in Rm. Show that the sets

Kλ ∶= {x ∈ Rn ∶ ∥Ax − b∥2 ⩽ λ}

are closed and bounded.
Proof. Let λ ⩾ 0 be given and fix it. We first show the closure of Kλ. Suppose (x1, x2, ...) ⊂Kλ converges
to some x ∈ Rn. By triangle inequality,

∥Ax − b∥ ⩽ ∥Ax −Axi∥ + ∥Axi − b∥ for xi ∈ (x1, x2, ...).

The first term on the RHS converges to 0 because A is a bounded operator (linear with finite-dimensional
domain) and the second term ⩽ λ. Therefore the sum ⩽ λ, i.e., x ∈Kλ.
For boundedness, suppose Kλ is unbounded so there exists (x1, x2, ...) ⊂Kλ (most likely a different sequence
from the one used previously…a bit of abuse of notation here) such that ∥xk∥ ⩾ k. Triangle inequality gives
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∥Axk∥ ⩽ ∥Axk − b∥+ ∥b∥. The RHS is bounded by some constant M in this case, so M must also bound the
LHS. Thus ∥Axk∥ is bounded for all xk ∈ (x1, x2, ...). It follows that if we define the sequence (y1, y2, . . .)
by

yk ∶=
xk

∥xk∥
then Ayk = Axk/∥xk∥ converges to 0 (the numerator is bounded and the denominator →∞). Since (I hope
this is allowed in 501) unit balls in finite-dimensional spaces (in particular Rn) are compact, (y1, y2, ...)
admits a convergent subsequence that converges to some y with ∥y∥ = 1. But then Ay = 0 for some nonzero
y, contradicting the assumption that A is of full column rank. Thus Kλ is bounded.

5.3.26 Assume the hypotheses in the preceding problem. Prove that if λ = 2∥b∥2 then

inf
x∈Rn
∥Ax − b∥2 = inf

x∈Kλ

∥Ax − b∥2.

Proof. That inf
x∈Rn
∥Ax − b∥2 ⩽ inf

x∈Kλ

∥Ax − b∥2 is trivial, so it suffices to show that any x ∈ Rn ∖Kλ has no

effect on determining the infimum. Indeed, letting x = 0 tells us that the infimum of both sides are ⩽ ∥b∥2,
so it suffices to check the infimum of all x’s with ∥Ax − b∥2 ⩽ ∥b∥2 which, of course, is contained in Kλ.
(Not sure why the problem asked explicitly for 2∥b∥2 though...)

5.3.27 Show that if Am×n is of rank n then the least-squares solution of Ax = b satisfies the inequality

∥x∥2 ⩽ 2∥b∥2∥B∥2

where B is any left inverse of A. Here ∥ ⋅ ∥2 denotes the matrix norm subordinate to Euclidean ∥ ⋅ ∥2.

Proof. If x solves Ax = b then

∥x∥2 = ∥BAx∥2 ⩽ ∥B∥2∥Ax∥2 ⩽ 2∥B∥2∥b∥2.

5.3.28 Let A be an m × n matrix of unspecified rank. Let b ∈ Rm and let

ρ ∶= inf
x∈Rn
∥Ax − b∥.

Prove that this infimum is attained, regardless of the rank of A and the choice of ∥ ⋅ ∥.

Proof. If A is of full column rank, by (a slight generalization of) 5.3.26 inf
x∈Rn
∥Ax − b∥ is the same as

inf
x∈Kλ

∥Ax− b∥ where λ = 2∥b∥ (the proof of the generalized version, i.e., without specifying ∥ ⋅ ∥2, is identical

to that of the case ∥ ⋅ ∥2). Since the map x ↦ ∥Ax − b∥ is the composition of several continuous maps
(namely the composition of ∥ ⋅ ∥ with the sum of x ↦ Ax and the constant b), it is also continuous. A
closed and bounded set Kλ in a finite-dimensional space is compact, so its image must be compact as well.
Therefore the infimum is attained.

Now suppose A (m × n) is not of full column rank. Clearly if we swap the orders of the columns of A, the
infimum is unaffected in either case (we can just swap the corresponding components of x as well). With
that justified, assume all the pivot columns are aligned on the left side of A and suppose there are k < n
such columns. Now define Bn×k to be the left n× k sub-matrix of In×n, i.e., the leftmost k columns of the
n×n identity matrix. It follows that (1) A shares the same column space with AB and, more importantly,
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(2) AB is of full column rank. Therefore there does exist x̃ ∈ Rk such that

inf
x∈Rk
∥ABx − b∥ = ∥ABx̃ − b∥.

But we’ve said AB and A have the same column space, so inf
x∈Rk
∥ABx− b∥ = inf

x∈Rn
∥Ax− b∥ and the infimum

for the RHS can also be attained by Bx̃ ∈ Rn.

5.3.29 Adopt the assumptions in the preceding problem and prove that the equation ATAx = AT b has a solution,
regardless of the rank of A.

Proof. This problem amounts to showing that AT b lies inside the column space of ATA. Since the double
orthogonal complement of a closed subspace is simple the subspace itself (i.e., if U is a closed subspace then
(U⊥)⊥ = U), it suffices to show that AT b is orthogonal to everything inside (C(ATA))⊥ (the orthogonal
complement of the column space of ATA). Let y ∈ (C(ATA))⊥ be arbitrarily chosen. Then

yTATA = 0 Ô⇒ yTATAy = ∥Ay∥2 = 0 Ô⇒ Ay = 0 Ô⇒ yTAT b = 0,

i.e., y is indeed orthogonal to AT b. Thus AT b ∈ C(ATA), proving the claim.

5.3.42 Determine κ∞(A) and κ∞(A∗A) where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

ϵ 0 0

0 ϵ 0

0 0 ϵ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and A∗A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + ϵ2 1 1

1 1 + ϵ2 1

1 1 1 + ϵ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

What happens as ϵ→ 0?

Solution Recall [or not] that κ∞(A) = ∥A∥∞∥A+∥∞. Putting A and A∗ into WolframAlpha, we have

A+ = 1

ϵ2 + 3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 (ϵ2 + 2)/ϵ −1/ϵ −1/ϵ
1 −1/ϵ (ϵ2 + 2)/ϵ −1/ϵ
1 −1/ϵ −1/ϵ (ϵ2 + 2)/ϵ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and

(A∗A)−1 = 1

ϵ4 + 3ϵ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϵ2 + 2 −1 −1
−1 ϵ2 + 2 −1
−1 −1 ϵ2 + 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall that ∥Mn×n∥∞ = max
1⩽i⩽n

n

∑
j=1
∣Mi,j ∣ (the sum of entries of the row in which the sum of component-wise

absolute values is the maximum). Now we compute κ∞(A) and κ∞(A∗A):

κ∞(A) = ∥A∥∞∥A+∥∞ = 3 ⋅
1 + ϵ
3 + ϵ2

= 3 + ϵ
3 + ϵ2

and lim
ϵ→0

κ∞(A) = lim
ϵ→0

3 + ϵ
3 + ϵ2

= 1,

and

κ∞(A∗A) = (3 + ϵ2)
ϵ2

ϵ4 + 3ϵ2
= 1 and lim

ϵ→0
κ∞(A∗A) = 1.
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