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Pseudocode Programming

Unlike what they have done in other chapters, Cheney and Kincaid did not include a sample pseudocode for SVD in
Chapter 5.4. Therefore it is reasonable to assume that problem 5.4.40 allows the use of pinv(A). If so, the solution
is simply given by x = pinv(A) * B.

If, pinv(A) is not allowed in this assignment, the
code on the right provides an alternate version using
MATLAB’s svd(A) only (so that the pseudoinverse
is computed separately via (UΣV T )+ = V Σ+U∗).

Left 3 × 4 is A+, rightmost column is x

1 A = [0,-1.6,0.6;0,1.2,0.8; 0,0,0; 0,0,0];

2 b = [5; 7; 3; -2];

3

4 [U, Sigma, T] = svd(A);

5 [m, n] = size(Sigma);

6

7 Sigma_pseudo = zeros(n,m);

8 for i = 1: min(m,n)

9 if Sigma(i,i) ~= 0

10 Sigma_pseudo(i,i) = 1 / Sigma(i,i);

11 end

12 end

13

14 A_pseudo = T * Sigma_pseudo * U';

Textbook Problems

5.4.3 Find A+ in the case that AA∗ is invertible.

Solution. Claim: if this is the case then A+ = A∗(AA∗)−1. To prove the claim, it suffices to check that
B = A∗(AA∗)−1 satisfies all four Penrose properties:

ABA = AA∗(AA∗)−1A = A (1)

BAB = A∗(AA∗)−1AA∗(AA∗)−1 = A∗(AA∗)−1 = B (2)

I = (AB)∗ = (AA∗(AA∗)−1)∗ = I∗ (3)

(BA)∗ = (A∗(AA∗)−1A)∗ = A∗((AA∗)−1)∗A = A∗(AA∗)−1A = BA (4)

(where the second-last step in (4) uses the fact that AA∗ is Hermitian.)
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5.4.4 Find A+ in the case that A∗A = I.

Solution. Claim: if A∗A = I then A+ = A∗. Indeed,

AA∗A = A (1)

A∗AA∗ = A∗ (2)

(AA∗)∗ = A∗∗A∗ = AA∗ (3)

(A∗A)∗ = A∗A∗∗ = A∗A. (4)

5.4.5 Find A+ in the case that A is Hermitian and idempotent, i.e., A∗ = A = A2.

Solution. Claim: the pseudoinverse is A itself. Indeed, if so we have

AA+A = A3 = A(A2) = A2 = A = A3 = A+AA+ (1) and (2)

and

(AA+)∗ = (A2)∗ = A∗ = AA+ = A∗ = (A2)∗ = (A+A)∗ (3) and (4)

5.4.6 Prove that if A is hermitian then so is A+.

Proof. Just like (AT )−1 = (A−1)T for invertible A, we now show that (A∗)+ = (A+)∗. Indeed, using the
Penrose properties of A+ on A, we obtain the following:

A∗(A+)∗A∗ = (AA+A)∗ = A∗ (1)

(A+)∗A∗(A+)∗ = (A+AA+)∗ = (A+)∗ (2)

(A∗(A+)∗)∗ = A+A = (A+A)∗ = A∗(A+)∗ (3)

((A+)∗A∗)∗ = AA+ = (AA+)∗ = (A+)∗A∗ (4)

Therefore (A∗)+ = (A+)∗. Since A is Hermitian, (A∗)+ = A+ so A+ = (A+)∗, i.e., A+ is Hermitian.

5.4.9 If A is Hermitian, what is the relationship between its eigenvalues and its singular values?

Solution. If λ is an eigenvalue of A then it also is one for A∗ (which is just A). Therefore λ2 is an eigenvalue
of A∗A = A2 since

Ax = λx Ô⇒ A2x = A(Ax) = λAx = λ2x.

It follows that ∣λ∣ is a singular value of A.

5.4.18 Prove that if A is Hermitian and positive definite then its eigenvalues are identical with its singular values.

Proof. If A is positive definite then all its eigenvalues must be positive, for any negative eigenvalue λ with
eigenvector x would give

x∗Ax = x∗λx = λx∗x = λ∥x∥2 < 0,

contradicting its positive definiteness. Then by the previous problem, λi would coincide with σi.

5.4.20 Let A be an n × n matrix having singular values σ1, ..., σn. Prove that the determinant of A is

det(A) = ±σ1σ2...σn.
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Proof. Notice that det(A) = det(A∗) =
√

det(A∗A). Since the eigenvalues of A∗A are σ2
1 , ..., σ

2
n, it suffices

to show that
det(A∗A) =

n

∏
i=1

σ2
i .

More generally, we can show that the determinant of a matrix Mn×n is the product of all its eigenvalues.
Let λ1, ..., λn be the eigenvalues of M . It follows that the characteristic polynomial of M is

det(M − λI) = (λ1 − λ)(λ2 − λ)...(λn − λ),

and setting λ ∶= 0 proves our claim.

5.4.21 Let ∥A∥2 denote the matrix norm subordinate to the Euclidean vector norm. Let σ1 be the largest singular
value of A. Show that ∥A∥2 = σ1.

Proof. I’ve shown this in Ex.5.2.16 in HW10. By SVD,

∥A∥2 = sup
∥x∥2=1

∥Ax∥2 = sup
∥x∥2=1

∥UΣV ∗x∥2 = sup
∥x∥2=1

∥ΣV ∗x∥2 = sup
∥y∥2=1

∥Σy∥2

where the third equality uses the fact that U is unitary, thus preserving the norm of ΣV ∗x and the last
equality uses the fact that V ∗ is unitary and sup

∥x∥2=1
is the same as sup

∥V ∗x∥2=1
. It then becomes clear that

∥Σy∥2 can be maximized when y = e(1), and when this happens, the norm evaluates to σ1. Thus ∥A∥22 = σ2
1

and ∥A∥2 = σ1.

5.4.30 Prove that if the m × n matrix A has rank n then A+ = (A∗A)−1A∗.

Proof. If A is m × n with rank n then A∗A is a symmetric n × n matrix with full rank:

A∗Ax = 0 Ô⇒ 0 = x∗A∗Ax = ∥Ax∥2 Ô⇒ x = 0.

Therefore the inverse (A∗A)−1 is well-defined. Now it remains to verify the proposed A+ satisfies all four
Penrose properties:

AA+A = A(A∗A)−1A∗A = A (1)

A+AA+ = (A∗A)−1A∗A(A∗A)−1A∗ = (A∗A)−1A∗ = A+ (2)

(AA+)∗ = (A(A∗A)−1A∗)∗ = A∗∗((A∗A)−1)∗A∗ = A(A∗A)−1A∗ = AA+ (3)

I∗ = (A+A)∗ = ((A∗A)−1A∗A)∗ = I∗ (4)

This proves the claim.
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