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Pseudocode Programming

For solving a single-valued function (p.71 prob. 1):

1 syms f(x);

2 f(x) = x - tan(x);

3 g = diff (f);

4

5 x_old = input('Enter x0 here: ');

6

7 if (abs(f(x_old))<eps)

8 x_final = double(x_old);

9 fx_final = double(f(x_old));

10 clearvars -except x_final fx_final

11 return

12 end

13 for k = 1:100

14 x_new = x_old - f(x_old) / g(x_old);

15 v = f(x_new);

16 if ((abs(x_new-x_old)<eps) || (abs(v)<eps))

17 disp (k + 'iterations operated.');

18 break

19 else

20 x_old = x_new;

21 end

22 end

23

24 x_final = double(x_new);

25 fx_final = double(f(x_new));

26 clearvars -except x_final fx_final

Outputs for x0 = 4.5 (4 iterations):

Outputs for x0 = 7.7 (5 iterations):

For solving system of nonlinear equations (p.74 prob. 34):

1 syms x y

2 f1(x,y) = 4*y^2 + 4*y + 52*x - 19;

3 f2(x,y) = 169*x^2 + 3*y^2 + 111*x - 10*y - 10;

4

5 x_old = input('Enter initial x0: ');

6 y_old = input('Enter initial y0: ');

7

8 if (max(abs(f1(x_old,y_old)),abs(f2(x_old,y_old)))<eps)

9 f1_value = f1(x_old,y_old);

10 f2_value = f2(x_old,y_old);

11 disp('Initial guess is good enough');

12 clearvars

13 else

14 for k = 1:100

15 F = [x_old; y_old];

16 Fx = [f1(x_old,y_old); f2(x_old,y_old)];

17 J = jacobian([f1,f2],[x,y]);

18 F_new = F - inv(J(x_old,y_old))*Fx;

19 x_new = F_new(1,1);

20 y_new = F_new(2,1);

21 f1_value = f1(x_new,y_new);

22 f2_value = f2(x_new,y_new);

23 if(max([abs(f1_value),abs(f2_value),abs(x_new-x_old),

24 abs(y_new-y_old)])<eps)

25 disp (k + ' iterations operated.');

26 break

27 else

28 x_old = x_new;

29 y_old = y_new;

30 end

31 end

32 end

One solution pair with x0 = y0 = 1 and 7 iterations: (some

extra code were included to convert values from sym back

to double and to cleanup the workspace)
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Textbook Problems

3.2.6 Consider Steffensen’s method with the iteration formula

xn+1 = xn −
f(xn)2

f(xn + f(xn)) − f(xn)
.

Show that this is quadratically convergent under suitable hypothesis.

Proof. To begin with, we assume f is “nice” in the sense that f ∈ C2 and f ′(r) = f(r) = 0. We show that

en ∶= xn − r converges to 0 with en+1 ∼ e2n.
By Taylor’s approximation theorem, since f ∈ C2 (and therefore in C1), we have

f(xn + f(xn)) = f(xn) + f ′(xn)f(xn) +
f ′′(ξ1)

2
f(xn)2 (1)

f(xn − en) = 0 = f(xn) − enf ′(xn) + e2n
f ′′(ξ2)

2
(2)

f(xn − en) = 0 = f(xn) − enf ′(ξ3) (3)

for some ξ1 between xn and xn + f(xn), some ξ2, ξ3 between r and xn (the first two lines used f ∈ C2 and

the third used f ∈ C1).

By (1), we can rewrite the Steffensen’s method as

xn+1 = xn −
f(xn)1

f ′(xn) + f ′′(ξ1)f(xn)/2
,

and so since en+1 = xn+1 − r,

en+1 =
en³¹¹¹¹¹·¹¹¹¹µ

xn − r−
f(xn)

f ′(xn) + f ′′(ξ1)f(xn)/2

= −f(xn) + enf ′(xn) + enf ′′(ξ1)f(xn)/2
f ′(xn) + f ′′(ξ1)f(xn)/2

= e
2
nf

′′(ξ2)/2 + e2nf ′′(ξ1)f ′(ξ3)/2
f ′(xn) + f ′′(ξ1)f(xn)/2

= e2n ⋅ [
f ′′(ξ2) + f ′′(ξ1)f ′(ξ3)
2f ′(xn) + f ′′(ξ1)f(xn)

] .

In fact, the monstrous coefficient coefficients cancels out nicely to ∣f
′′(r)
f ′(r) ∣ ⋅ ∣1 + f

′(r)∣
2

as xn → r and the

continuity of x implies ξ1, ξ2, ξ3 → r. Indeed Steffensen’s method is quadratically convergent.

3.2.7 What is the purpose of the following iteration formula? Identify it as the Newton iteration for a certain

function.

xn+1 = 2xn − x2ny

Solution

(This question is ambiguous; I here treat y as a constant, but since y is usually interpreted as y = f(x),
there of course exists a drastically different result if we think that way.) First rewrite this as xn+1 =
xn − (x2ny − xn). Then f(x)/f ′(x) = x2y − x Ô⇒ f ′(x) = f(x)/(x2y − x). Using 1/(x2y − x) as the

2



MATH 501 Problem Set 3 Qilin Ye

integrating factor, one sees that

f(x) = exp∫ 1/(x2y − x) dx = exp[ln((1 − xy)/x) +C] = 1 − xy
Cx

.

3.2.13 Devise a Newton iteration formula for computing 3
√
R where R > 0. Perform a graphical analysis of your

function f(x) to determine the starting values for which the iteration will converge.

Solution

We simply need to find the root of f(x) = x3 −R. This function has derivative f ′(x) = 3x2. Then the

iteration formula is given by

xn+1 =∶ g(xn) = xn −
f(x)
f ′(x) = xn −

x3n −R
3x2n

= 2xn
3

+ R

3x2n
.

In fact, we first show that there are only countable many x0’s that would eventually iterate to 0. First

notice that the only real solution to xn+1 = 0 is

−2xn
3

= R

3x2n
Ô⇒ x3n = −2R Ô⇒ xn = − 3

√
R/2.

Further notice that if g(x) = − 3
√
R/2 then immediately x < 0. However, as x < 0, g(x) is monotone.

This means there will be a unique negative solution to g(x) = − 3
√
R/2. So on and so forth. In the

end, we obtain a list of real numbers which eventually iterate to − 3
√
R/2 and thus 0. Other than these

countably many x0’s, we will never iterate to 0, so Newton’s method is well-defined except for these

special cases.

If 3
√
R = r > 0 and x0 > r, then the sequence {xn} will always be positive since 2xn/3 and R/3x2n are.

On the other hand, since (x3n − R)/3x2n is positive, {xn} is also monotone decreasing. Therefore it

converges to some r̃. Since the mapping xn ↦ xn − f(x)/f ′(x) is continuous, the limit r̃ must be a

fixed point, i.e.,

r̃3 = r̃3 − f(r̃)
f ′(r̃) Ô⇒ f(r̃) = 0 Ô⇒ r̃ = 3

√
R.

Now suppose r > 0 and x0 < r. It clearly follows that {xn} is monotone increasing. Should it be

bounded above by something < r it cannot converge to r, a contradiction. On the other hand, notice

that −r/2 is the “magic point” where

g(−r/2) = −r
2
− f(−r/2)
f ′(r/2) = −r

3
+ r3

3r2/4 = r.

If x > −r/2, it’s easy to verify that g(x) > r as the tangent line passing through (x,x3 − r3) is less steep

than the secant line between (x,x3 − r3) and (r,0): the former has slope 3x2, whereas the second has

slope (r3 − x3)/(r − x) = r2 + rx + x2 > x2 + x2 + x2.
Therefore, as {xn} monotonously increases, some xn has to reach or pass −r/2, resulting in xn+1 > r,
and the claim follows from the first part, i.e., r > 0 and x0 > r, treating x0 ∶= xn+1.
To sum up, we’ve shown that most nonzero x0’s (except for a countably many exceptions) will even-

tually produce a sequence {xn} that converges to 3
√
R.
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3.2.15 The function f(x) = x2 + 1 has zeros in the complex plane at x = ±i. Is there a real starting point for the

complex Newton’s method such that the iteration converge to either of these zeros? Answer the same question

for complex starting points.

Solution

No. If we start with a real number then {xn} is a subset of the real axis and we’ll never get any

complex xn’s out of it. I have little clue how to prove the convergence for the case of complex numbers,

but after modifying my MATLAB program, every single complex x0 I’ve tested converged to either i

or −i, so I suspect the claim holds as well.

3.2.22 Which of the following converges quadratically?

(a) 1

n2
(b) 1

22n
(c) 1√

n
(d) 1

en
(e) 1

nn

Solution

Only (b) converges quadratically with (1/22n)2 = 1/22n+1 . It’s obvious that the rest don’t:

(a) lim
n→∞

(1/(n + 1)2)/(1/n2)2 = lim
n→∞

n4/(n + 1)2 = ∞.

(c) lim
n→∞

(1/
√
n + 1)/(1/

√
n)2 = lim

n→∞
n/

√
n + 1 = ∞.

(d) lim
n→∞

(1/en+1)/(1/en)2 = lim
n→∞

en−1 = ∞.

(e) lim
n→∞

(1/(n + 1)n+1)/(1/nn)2 = lim
n→∞

n2n/(n + 1)n+1 = ∞.

3.2.35 Halley’s method for solving equation f(x) = 0 uses the iteration formula

xn+1 = xn −
fnf

′

n

(f ′)2 − fnf ′′n /2

where fn = f(xn) and so on. Show that this formula results when Newton’s iteration is applied to f/
√
f ′.

Proof. This follows simply from direct computation. For clarity I will denote fn as f(xn) instead.

f(xn)/
√
f ′(xn)

d
dx

[f(xn)/
√
f ′(xn)]

= f(xn)√
f ′(xn)

⋅ f ′(xn)√
f ′(xn)f ′(xn) − f(xn)f ′′(xn)/2

√
f ′(xn)

= f(xn)f ′(xn)
f ′(xn)2 − f(xn)f ′′(xn)/2

as desired, where the huge fraction comes from quotient rule.

3.3.1 Establish equation (4) on page 77.
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Solution

en+1 =
f(xn)en−1 − f(xn−1)en

f(xn) − f(xn−1)

= enen−1
f(xn)/en − f(xn−1)en−1

f(xn) − f(xn−1)

= enen−1 [
xn − xn−1

f(xn − f(xn−1)
] [f(xn)/en − f(xn−1)/en−1

xn − xn−1
] .

3.3.2 In the secant method, prove that if xn → q as n→∞ and if f ′(q) ≠ 0 then q is a zero of f .

Proof. Suppose {xn} → q. In particular this sequence is Cauchy, so by construction

f(xn) [
xn − xn−1

f(xn) − f(xn−1)
] → 0 as n→∞.

Since f ′(q) = lim
n→∞

f(xn) − f(xn−1)
xn − xn−1

≠ 0, it must be the case that lim
n→∞

f(xn) → 0. Since {xn} → q we

conclude that f(q) = 0, as desired.

3.3.10 The relation of asymptotic equality between two sequences is written xn ∼ yn and signifies that lim
n→∞

xn/yn = 1.

Prove that if xn ∼ yn, un ∼ vn, and c ≠ 0, then

(a)cxn ∼ cyn (b)xcn ∼ ycn (c)xnun ∼ ynvn (d)yn ∼ un ⇒ xn ∼ vn (e)yn ∼ xn

Proof. Recall the important facts that if liman = a, lim bn = b, and c ≠ 0 then

liman lim bn = ab and λ liman = λa.

(a) is immediate since (cxn)/(cyn) = xn/yn. (b) holds because xcn/ycn = (xn/yn)c, and it remains to apply

the first equation above. (c) is also obvious once we realize that (xnun)/(ynvn) = (xn/yn)(un/vn), and
once again the limit of product is the product of limits. (d) holds because

lim
n→∞

xn
vn

= lim
n→∞

xn
yn

yn
un

un
vn

= 1 ⋅ 1 ⋅ 1 = 1.

Finally, (e) holds because lim yn/xn = lim1/(xn/yn) = 1.

3.3.13 Prove that if Vi is defined recursively by

Vi = Vi−1(1 + r) + ai

for i ⩾ 2 with V1 = a1, then Vn =
n

∑
i=1

ai(1 + r)n−i.

Proof. We will prove this by induction. Let ϕ(m) be the claim that Vk =
m

∑
i=1

ai(1 + r)n−i. Clearly ϕ(1) is

5



MATH 501 Problem Set 3 Qilin Ye

true as V1 = a1. Now for the inductive step, assume ϕ(k) holds. Then,

Vk+1 = Vk(1 + r) + ak+1

= (1 + r)
k

∑
i=1

ai(1 + r)k−i + ak+1

=
k

∑
i=1

ai(1 + r)k+1−i + ak+1

=
k+1

∑
i=1

ai(1 + r)k+1−i,

and indeed ϕ(m) holds for all m.
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