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Pseudocode Programming

1 a = input("Enter x0 here: ");

2 b = input("Enter x1 here: ");

3 u = f(a);

4 v = f(b);

5

6 for k = 2:99

7 if (abs(u) < abs(v))

8 [a, b] = swap(a, b);

9 [u, v] = swap(u, v);

10 disp("Endpoints swapped");

11 end

12 s = (b - a)/(v - u);

13 a = b;

14 u = v;

15 b = (b - v * s);

16 v = (f(b));

17

18 disp("Iteration " + double(k) + ": x = " +

double(b) + " and f(x) = " +

double(v));

19 if (abs(v)<eps)

20 disp("f(x) is small enough");

21 break

22 elseif (abs(b-a)<eps)

23 disp("x is close enough to root,

should it exist");

24 break;

25 end

26 end

27

28 function y = f(x)

29 y = x^3-sinh(x)+4*x^2+6*x+9;

30 end

31

32 function [b, a] = swap(a, b)

33 end

Output for x0 = 7 and x1 = 8:

Output for problem 3.4.12 with x0 = 3 and x1 = 10:

Notice that we do not have a root at x ≈ −0.324. The algorithm

stopped because x8 ≈ x5, whereas two consecutive swaps of end-

points after x6 and x7 computed resulted in the algorithm com-

paring x8 directly with x5, and it got tricked into believing that

xn ≈ xn+1.
The early iterations forced xn’s to move leftwards until x6 got com-

puted which resulted in a slightly larger value f(x6) than f(x5),
despite ∣x6 − x5∣ being relatively large. This then leads to a swap

of endpoints and a large, positive x7 which results in an enormous

f(x7). Clearly picking x0 = 3 and x1 = 10 is a bad idea.
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Textbook Problems

3.4.2 Prove that if F ∶ [a, b] → R, if F ′ ∈ C0, and if ∣F ′(x)∣ < 1 on [a, b], then F is a contraction. Does F necessarily

have a fixed point?

Proof. Since [a, b] is compact and F ′ is continuous, the derivative attains its maximum F ′(ξ) for some

ξ ∈ [a, b]. Then since F ′(ξ) < 1, applying MVT gives

∣F (x) − F (y)∣ = F ′(ξ∗)∣x − y∣ ⩽ F ′(ξ)∣x − y∣

for some ξ∗ between x and y, and this shows F is contractive.

For fixed point, no. Consider F (x) ∶= 1 + x/2 on [0,1] — the only solution to 1 + x/2 = x is x = 2, outside

the domain.

A stronger argument exists: even if F ∶ R→ R, it still does not necessarily have a fixed point. Consider the

Signoid function

S(x) = 1

1 + e−x .

Taking the antiderivative of 1 − S(x) gives

F (x) = ∫ 1 − 1

1 + e−x dx = x − ln(ex + 1) +C.

Setting C = 0, this function has derivative ∈ (0,1) everywhere and F (x) < x for all x, as ln(ex +1) is never

0.

However, replacing ∣F ′(x)∣ < 1 by ∣F ′(x)∣ ⩽ 1 − ε < 1 guarantees the existence of a fixed point, as one can

then extract a Cauchy sequence with the iteration xn+1 = F (xn).

3.4.3 Prove that if F is a continuous map from [a, b] → [a, b] then F must have a fixed point. Determine if this

assertion holds for F ∶ R→ R.

Proof. Define G ∶ [a, b] → R by G(x) ∶= F (x) − x. Since the minimal value F can attain is a, we see that

G(a) ⩾ 0. Likewise, G(b) ⩽ 0. If one (or both) of these endpoints satisfies the equation we immediately

have a fixed point. Otherwise, since G is the difference between two continuous functions, it is continuous,

and by IVT there exists some ξ ∈ (a, b) such that G(ξ) = 0, and such ξ is a fixed point.

The claim is not true in general if we consider F ∶ R→ R. The italic paragraphs above serve as an example.

For a simpler one, consider F (x) ∶= x + 1 from R→ R.

3.4.5 Kepler’s equation reads x = y − ε sin y, ε ∈ (0,1). Show that for each x ∈ [0, π] there is a y satisfying the

equation. Interpret this as a fixed-point problem.

Proof. Define F (y) ∶= y − ε sin y. Since F (0) = 0 and F (π) = π, this claim is trivial for x = 0 and x = π.
We’ll now assume x ∈ (0, π). Let any such x0 be given. Consider G(y) ∶= y − ε sin y − x0. Clearly since

x0 > 0 we have G(0) < 0, and since x0 < π we have G(π) > 0. Continuity of F implies that of G, so by

MVT there exists some ξ ∈ (0, π) such that G(ξ) = 0, i.e., F (ξ) = x0, as desired.

Proof using fixed point. Let x be given. Define h(y) ∶= x+ ε sin(y) on [0, π], whose derivative, ε cos(y),
is always between [0, ε], hence a contractive mapping. Therefore by the contractive mapping theorem, h

admits a fixed point y′ ∈ [0, π] such that h(y′) = y′ = x + ε sin(y′), i.e., x = y′ + ε sin(y′).
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3.4.12 Let p be a positive number. Evaluate

x =
√
p +

√
p +√

p +⋯.

Solution

Let x1 =
√
p and xn+1 =

√
p + xn. The above x is the same as lim

n→∞xn. We now show that the function

f(x) ∶= √
p + x is contractive for p > 1 (assuming f ∶ [−p,∞) → [0,∞)). Indeed, since f is continuous,

for all a < b (in the domain), f(b) − f(a) = f ′(ξ)(b − a) for some ξ ∈ [a, b]. However, notice that

d

dx
[√p + x] = 1

2
√
p + x ∈ (0,1/2]

with the assumption p > 1 and x > −p. This means f ′(ξ) ⩽ 1/2 for all ξ in the domain of f , and thus

f is contractive. Since [−p,∞) is closed in R, by the contractive mapping theorem f admits a fixed

point x where
√
p + x = x Ô⇒ p+x = x2 Ô⇒ x2 −x−p = 0 Ô⇒ x = (1+

√
4p + 1)/2. (We discard the

other solution because x is clearly positive in this context.)

3.4.23 Find the order of convergence of these sequences:

(a) xn =
√
1/n (b) xn = n

√
n (c) xn =

√
1 + 1/n (d) xn+1 = tan−1 xn

Solution

(a) We see that lim
n→∞

√
1/n = 0, therefore en = xn. Notice that lim

n→∞(
√
1/(n + 1))/(

√
1/n) = 1 whereas

if p > 1 (power of denominator), using L’Hôpital’s rule gives a divergent limit. Hence the order

of convergence is 1.

(b) Notice that xn → 1 as n→∞. This sequence converges with order 1 because

lim
n→∞

1 − (n + 1)1/(n+1)
1 − n1/n = lim

n→∞
(n + 1)1/(n+1)−2(log(n + 1) − 1)

n1/n−2(log(n) − 1) = 1,

while the limit does not exist if 1 − n1/n is raised to some power > 1.

(c) Once again, xn → 1. The convergence is of order 1 since

lim
n→∞

1 − (1 + 1/(n + 1))1/2
(1 − (1 + 1/n)1/2 = lim

n→∞
2n2

√
1 + 1/n

2(n + 1)2
√
1 + 1/(n + 1)

= 1

while if p > 1 then the limit does not exist.

(d) First observe that xn → 0: f(x) = tan−1(x) is contractive and the only solution to x = arc tanx,
i.e., fixed point, is x = 0. Then since

d

dx
tan−1(0) = 1

02 + 1
= 1

we see that this sequence converges with order 1 (since arctan’s first derivative does not vanish

at 0).
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3.4.25 Prove that F (x) ∶= 4x(1−x) that maps [0,1] into itself is not a contraction but has a fixed point. Why does

this not contradict the contractive mapping theorem?

Solution

Indeed, ∣F (1) − F (0.5)∣ = ∣0 − 1∣ = 1 > ∣1 − 0.5∣, so F is not contractive. On the other hand, F (0) = 0 so

that is a fixed point. (In fact, x = 0.75 is also a fixed point.) This does not contradict the contractive

mapping theorem because the latter says nothing about functions that are not contractive; it only says

contractive mappings on a closed set has a fixed point.

4.1.6 A monomial matrix is a square matrix in which each row and column contains exactly one nonzero entry.

Prove that a monomial matrix is nonsingular.

Proof. If a n × n matrix is monomial, then its columns form a standard basis of Rn: there exists

exactly one column in which the first entry (entry from first row) is 1 and all others are 0, corresponding

to [1 0 . . . 0]T . Then there exists exactly one column, different from the one before, that is of form

[0 1 0 . . . 0]T . Eventually we have n linearly independent column vectors, and their linear independence

implies the matrix’s nonsingularity.

4.1.7 Let A have the block form

A =
⎡⎢⎢⎢⎢⎣

B C

0 I

⎤⎥⎥⎥⎥⎦

in which the blocks are n × n. Prove that if B − I is nonsingular then for k ⩾ 1,

Ak =
⎡⎢⎢⎢⎢⎣

Bk (Bk − I)(B − I)−1C
0 I

⎤⎥⎥⎥⎥⎦
.

Proof. This is highly analogous to the following equation (of numbers):

xn − 1 = (x − 1)(xn−1 + xn−2 + ⋅ ⋅ ⋅ + 1).

Similarly, for matrix B and identity I,

Bk − I = (B − I)(Bk−1 +Bk−2 + ⋅ ⋅ ⋅ + I).

One can easily check the above equation by expanding all terms and seeing all Bn cancel out except for

Bk+1 (and I).

It is clear that the top-left, bottom-left, and bottom-right entries of Ak are Bk, 0, and I. It remains

to show that the top-right entry is (Bk − I)(B − I)−1C. Let ϕ(n) be the statement that Bn indeed has

top-right entry of this form. Immediately we see ϕ(1) holds:

(B1 − I)(B − I)−1C = IC = C.
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For the inductive step, assume ϕ(k) holds. Then, the top-right entry of Bk+1 is given by

[Bk (Bk − I)(B − I)−1C]
⎡⎢⎢⎢⎢⎣

C

I

⎤⎥⎥⎥⎥⎦
= BkC + (Bk − I)(B − I)−1C

= BkC + (Bk−1 +Bk−2 + ⋅ ⋅ ⋅ + I)C

= (Bk +Bk−1 + ⋅ ⋅ ⋅ + I)C

= (Bk+1 − I)(B − I)−1C,

as long as B − I is invertible. The claim then follows from the induction.

4.1.10 Prove that the set of upper triangular n × n matrices is a subalgebra of the algebra of all n × n matrices.

Proof. Closures of addition and of scalar multiplication between upper triangular matrices are trivial.

Now let A,B be two upper triangular n × n matrices and let C ∶= AB.

AB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 ⋯ a1,n−1 a1,n

0 a22 a23 ⋯ a2,n−1 a2,n

0 0 a33 ⋯ a3,n−1 a3,n

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 an,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 b13 ⋯ b1,n−1 bn,n

0 b22 b23 ⋯ b2,n−1 b2,n

0 0 b33 ⋯ b3,n−1 b3,n

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 bn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we consider entries of C. If i > j, i.e., Cij is below its diagonal, then it is 0 because

Cij = ai,1b1,j + ai,2b2,j + ⋅ ⋅ ⋅ + ai,i−1bi−1,j + ai,ibi,j + ⋅ ⋅ ⋅ + ai,nbn,j .

The terms highlighted in red are 0 because they are below A’s diagonal, while those highlighted in violet

are 0 because they are below B’s diagonal.

We could verify that i ⩽ j implies Ci.j is possibly nonzero (for example the cyan row times the violet

column), but such check is unnecessary because showing any entry below the diagonal is zero suffices to

prove C is upper-triangular.

4.1.13 Let A be an invertible n × n matrix and let u, v ∈ Rn. Find the necessary and sufficient conditions on u and

v in order that the matrix
⎡⎢⎢⎢⎢⎣

An×n un×1
vT
1×n 01×1

⎤⎥⎥⎥⎥⎦

be invertible, and give a formula for the inverse when it exists.

†Bold letter such as v refer to vectors, in this context 1 × n or n × 1 matrices.

Solution

For convenience we call this (n + 1) × (n + 1) matrix M . If M is invertible then it must be full rank,

and so block Gaussian elimination characterizes the invertibility of M : it is invertible if and only if

⎡⎢⎢⎢⎢⎣

An×n un×1
vT
1×n 01×1

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

An×n un×1
01×n −vTA−1u

⎤⎥⎥⎥⎥⎦
is invertible ⇐⇒ the Schur complement − vTA−1u ≠ 0.
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To find its inverse, it suffices to find its right inverse since M is a square matrix. Suppose

⎡⎢⎢⎢⎢⎣

An×n un×1
vT
1×n 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Bn×n xn×1
yT
1×n c

⎤⎥⎥⎥⎥⎦
= I(n+1)×(n+1).

Multiplying the elimination matrix (obtained from block Gaussian elimination above) on the left:

⎡⎢⎢⎢⎢⎣

In×n 0n×1
−vTA−1

1×n 1

⎤⎥⎥⎥⎥⎦
MM−1 =

⎡⎢⎢⎢⎢⎣

An×n un×1
01×n −vTA−1u

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Bn×n xn×1
yT
1×n c

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

In×n 0n×1
−vTA−1

1×n 1

⎤⎥⎥⎥⎥⎦
.

We can easily compute the bottom row entries yT and c (since the bottom-left entry of M is 0):

(−vTA−1u) ⋅ c = 1 Ô⇒ c = − 1

vTA−1u
, and

(−vTA−1u) ⋅ yT = −vTA−1 Ô⇒ yT = vTA−1

vTA−1u
.

Also, since Ax + cu = 0 (top-right of RHS),

x = A−1(−cu) = A−1u
vTA−1u

,

and since AB + uyT = I (top-left of RHS),

B = A−1AB = A−1I −A−1uyT = A−1 − A
−1uvTA−1

vTA−1u
.

To sum up, the inverse of M is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A−1 − A
−1uvTA−1

vTA−1u
A−1u

vTA−1u

vTA−1

vTA−1u
− 1

vTA−1u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.1.14 Let D be a matrix in partitioned form D =
⎡⎢⎢⎢⎢⎣

A B

C I

⎤⎥⎥⎥⎥⎦
. Prove that if A −BC is nonsingular then so is D.

Proof. If A−BC is nonsingular then det(A−BC) ≠ 0, and we want use this to prove det(D) ≠ 0. Similar

to LU -decomposition (but with “reversed” order — eliminating backward), consider

⎡⎢⎢⎢⎢⎣

I −B
0 I

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U

⎡⎢⎢⎢⎢⎣

A B

C I

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

=
⎡⎢⎢⎢⎢⎣

A −BC 0

C I

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

.

Then det(U)det(D) = det(L) = det(A −BC), where the last equality comes from the fact that Gaussian

elimination on L has no effect on the rightmost column, and a pivot 1 has no effect on det(L), so det(L) is

the same as the determinant of its top-left submaatrix, namely det(A−BC). Therefore if det(A−BC) ≠ 0,

we know det(D) ≠ 0, i.e., D is nonsingular.
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