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MATH 501 PROBLEM SET 4

Pseudocode Programming

Output for zg =7 and x; = 8:

input ("Enter x0 here: ");

input ("Enter x1 here: "); | Command Window

u = f(a); Enter x@ here: 7
v = £(b); Enter x1 here: 8
Endpoints swapped
for k = 2:99 Iteration 2: x = 7.0589 and f(x) = 20.7983
if (abs(u) < abs(v)) Iteration 3: x = 7.1176 and f(x) = -1.8347
~ Iteration 4: x = 7.1129 and f(x) = 0.071011
fa, b] = swap(a, b); Iteration 5: x = 7.1131 and f(x) = 0.00022912
(u, vl = swap(u, v); Iteration 6: x = 7.1131 and f(x) = -2.8751e-08|
disp("Endpoints swapped"); Iteration 7: x = 7.1131 and f(x) = 2.0606e-13
end Iteration 8: x = 7.1131 and f(x) = -1.5632e-13
S=(b-a)(v - w; Iteration 9: x = 7.1131 and f(x) = -1.5632e-13
o= b X 1is close enough to root, should it exist
’ fi >> |
u=v;
b=(b-v*s);
v = (£(b)); Output for problem 3.4.12 with xg =3 and 27 = 10:

disp("Iteration " + double(k) + ": x = " + Command Window

double(b) + " and f(x) = " + Endpoints swapped
double (v)); Iteration 2: x = 3.0582 and f(x) = 82.7393
Endpoints swapped

if (abs(v)<eps) Tteration 3: x

1.3124 and f(x) = 24.3021
disp("f(x) is small enough"); Iteration 4: x = 0.57587 and f(x) = 13.3645
break Iteration 5: x = -0.32412 and f(x) = 7.7713
Iteration 6: x = -1.5746 and f(x) = 7.8767
Endpoints swapped

elseif (abs(b-a)<eps)

disp("x is close enough to root, Iteration 7: x = 91.8862 and f(x) = -4.023986394221349e+39
should it exist"); Endpoints swapped
break; Iteration 8: x = -0.32412 and f(x) = 7.7713
x is close enough to root, should it exist
end fi >> |
end

Notice that we do not have a root at  ~ —0.324. The algorithm

function y = f£(x)
y = x~3-sinh(x)+4%x"2+6*x+9; stopped because xg » x5, whereas two consecutive swaps of end-
end points after zg and z7 computed resulted in the algorithm com-

paring xg directly with x5, and it got tricked into believing that

function [b, a] = swap(a, b)

end Tn N Tpl-

The early iterations forced z,,’s to move leftwards until zg got com-

puted which resulted in a slightly larger value f(z¢) than f(z5),

despite |xg — 5| being relatively large. This then leads to a swap
of endpoints and a large, positive x7 which results in an enormous

f(x7). Clearly picking o = 3 and x; = 10 is a bad idea.
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Textbook Problems

3.4.2 Prove that if F: [a,b] - R, if ' € C°, and if |F'(z)| <1 on [a,b], then F is a contraction. Does F necessarily

have a fixed point?

Proof. Since [a,b] is compact and F' is continuous, the derivative attains its maximum F’(&) for some

¢ € [a,b]. Then since F'(£) < 1, applying MVT gives
|F(2) - F(y)| = F'(§) e -yl < F'(§) | -y

for some £* between x and y, and this shows F' is contractive.

For fixed point, no. Consider F(x) := 1+ /2 on [0,1] — the only solution to 1+ x/2 = x is = 2, outside
the domain.

A stronger argument exists: even if F': R — R, it still does not necessarily have a fized point. Consider the

Signoid function
1

1+e’

S(x) =

Taking the antiderivative of 1 —S(x) gives

F(x):f1_1+1€—z dr=x-In(e” +1) +C.

Setting C =0, this function has derivative € (0,1) everywhere and F(x) <z for all x, as In(e® +1) is never
0.
However, replacing |F'(x)| <1 by |F'(xz)] < 1 -€ <1 guarantees the existence of a fixed point, as one can

then extract a Cauchy sequence with the iteration x,+1 = F(xy,). O

3.4.3 Prove that if F' is a continuous map from [a,b] — [a,b] then F' must have a fixed point. Determine if this
assertion holds for F': R — R.
Proof. Define G : [a,b] = R by G(x) := F(z) — z. Since the minimal value F' can attain is a, we see that
G(a) 2 0. Likewise, G(b) < 0. If one (or both) of these endpoints satisfies the equation we immediately
have a fixed point. Otherwise, since G is the difference between two continuous functions, it is continuous,
and by IVT there exists some & € (a,b) such that G(£) =0, and such ¢ is a fixed point.
The claim is not true in general if we consider F': R — R. The italic paragraphs above serve as an example.

For a simpler one, consider F'(x):=z + 1 from R - R. O

3.4.5 Kepler’s equation reads z = y — esiny, € € (0,1). Show that for each z € [0,7] there is a y satisfying the
equation. Interpret this as a fixed-point problem.

Proof. Define F(y) :=y —esiny. Since F(0) =0 and F(7) = 7, this claim is trivial for x =0 and = = 7.

We'll now assume x € (0,7). Let any such xy be given. Consider G(y) := y — esiny — xy. Clearly since

2o > 0 we have G(0) < 0, and since zp < © we have G(7) > 0. Continuity of F' implies that of G, so by

MVT there exists some & € (0,7) such that G(£) =0, i.e., F(£) = xo, as desired. O

Proof using fixed point. Let x be given. Define h(y) := x +esin(y) on [0, 7], whose derivative, € cos(y),
is always between [0, €], hence a contractive mapping. Therefore by the contractive mapping theorem, h

admits a fixed point y’ € [0, 7] such that h(y") =y’ = x + esin(y’), i.e., z =y + esin(y’). O
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3.4.12 Let p be a positive number. Evaluate

Solution

Let z1 = /p and 41 = /D + Tpn. The above x is the same as lim x,,. We now show that the function

n— oo
f(x) = /p+x is contractive for p > 1 (assuming f : [-p,00) = [0, 0)). Indeed, since f is continuous,

for all a < b (in the domain), f(b) - f(a) = f'(£)(b-a) for some £ € [a,b]. However, notice that
d 1
1= [Vp+z]= SNIEE €(0,1/2]

with the assumption p > 1 and z > —p. This means f'(£) < 1/2 for all £ in the domain of f, and thus
f is contractive. Since [-p, o0) is closed in R, by the contractive mapping theorem f admits a fixed
point x where \/ptz =0 = p+tax=122 = 2°-2-p=0 = 2= (1+/4p+1)/2. (We discard the

other solution because x is clearly positive in this context.)

3.4.23 Find the order of convergence of these sequences:

(a) z, =\/1/n (b) 2 = Vn (e)zn=/1+1/n (d) zps1 =tan 'z,

Solution

(a) We see that lim \/1/n =0, therefore e,, = z,,. Notice that lim (v/1/(n+1))/(y/1/n) =1 whereas

if p>1 (power of denominator), using L’Hopital’s rule gives a divergent limit. Hence the order

of convergence is 1.

(b) Notice that x,, > 1 as n - co. This sequence converges with order 1 because

lim 1-(n+1)Y/0+D)  lim (n+ )Y D=2(log(n +1) - 1) 1
n—oco 1-nt/n n—oco nt/n=2(log(n) - 1) ’

while the limit does not exist if 1 — n/™ is raised to some power > 1.

(¢) Once again, x,, —» 1. The convergence is of order 1 since

g L+ 1/ (n+ )2 - 2n%\/1+1/n .
noeo (L= (1+1/n)1/2 noee2(n+1)2/1+1/(n+1)

while if p > 1 then the limit does not exist.

(d) First observe that x, — 0: f(x) =tan™!(z) is contractive and the only solution to z = arctan,

i.e., fixed point, is = 0. Then since

d -1 1
—tan " (0) = e

=1
dz

we see that this sequence converges with order 1 (since arctan’s first derivative does not vanish

at 0).
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3.4.25 Prove that F(z) := 4z(1 - ) that maps [0, 1] into itself is not a contraction but has a fixed point. Why does

this not contradict the contractive mapping theorem?

Solution

Indeed, |F/(1) - F(0.5)|=]0-1|=1>|1-0.5], so F is not contractive. On the other hand, F'(0) =0 so
that is a fixed point. (In fact, = 0.75 is also a fixed point.) This does not contradict the contractive
mapping theorem because the latter says nothing about functions that are not contractive; it only says

contractive mappings on a closed set has a fixed point.

4.1.6 A monomial matrix is a square matrix in which each row and column contains exactly one nonzero entry.

Prove that a monomial matrix is nonsingular.

Proof. If a n x n matrix is monomial, then its columns form a standard basis of R™: there exists
exactly one column in which the first entry (entry from first row) is 1 and all others are 0, corresponding
to [1 0... 0]7. Then there exists exactly one column, different from the one before, that is of form
[010... 0]7. Eventually we have n linearly independent column vectors, and their linear independence

implies the matrix’s nonsingularity. O

4.1.7 Let A have the block form

B C
0 I

A=

in which the blocks are n x n. Prove that if B — I is nonsingular then for k > 1,

B* (B*-I)(B-I)'C
0 I

AP =

Proof. This is highly analogous to the following equation (of numbers):
" —1=(z-1)(" " +2" 2+ 4 1).
Similarly, for matrix B and identity I,
B _I1=(B-I)(B" '+ B2 ).

One can easily check the above equation by expanding all terms and seeing all B™ cancel out except for
Bk (and I).

It is clear that the top-left, bottom-left, and bottom-right entries of A¥ are B¥, 0, and I. It remains
to show that the top-right entry is (B* — I)(B - I)71C. Let ¢(n) be the statement that B" indeed has
top-right entry of this form. Immediately we see ¢(1) holds:

(B'-I)(B-I)'C=1C=C.
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For the inductive step, assume (k) holds. Then, the top-right entry of B**! is given by

[B* (B*-1)(B-1)"'C| “\-presr B -nB-ntCc

=BfC+ (B B )C
=(B*+B*+...41)C
= (B -1)(B-1)"'C,

as long as B — I is invertible. The claim then follows from the induction. O
4.1.10 Prove that the set of upper triangular n x n matrices is a subalgebra of the algebra of all n x n matrices.

Proof. Closures of addition and of scalar multiplication between upper triangular matrices are trivial.

Now let A, B be two upper triangular n x n matrices and let C' := AB.

a1 G2 613 0 @igp-1 Qi |[D11 Di2 bz o bipo1 bpn

0 Q22 A23 -+ A2 p-1 A2 0 bay  baz - bz,n—1 bz,n
AB=10 0 asgs - agn1 asn|[ 0 0 bz - D31 bgn
0 0 0o - 0 Q. 0 0 0o - 0 bmn

Now we consider entries of C. If i > j, i.e., Cy; is below its diagonal, then it is 0 because
Cij = ainbij+aiobyj+-+aii1bi1j+a;ibij++ainby ;.

The terms highlighted in red are 0 because they are below A’s diagonal, while those highlighted in violet
are 0 because they are below B’s diagonal.

We could verify that ¢ < j implies C; ; is possibly nonzero (for example the cyan row times the violet
column), but such check is unnecessary because showing any entry below the diagonal is zero suffices to
prove C' is upper-triangular. O

4.1.13 Let A be an invertible n x n matrix and let u,v € R™. Find the necessary and sufficient conditions on u and

Anxn Upx1
T
Vixn  O1x1

be invertible, and give a formula for the inverse when it exists.

v in order that the matrix

"Bold letter such as v refer to vectors, in this context 1 x n or n x 1 matrices.

Solution

For convenience we call this (n + 1) x (n + 1) matrix M. If M is invertible then it must be full rank,

and so block Gaussian elimination characterizes the invertibility of M: it is invertible if and only if

A u A u
;X" Sl IV I TM11 is invertible <= | the Schur complement — v’ A™u # 0.
Vin O1x1 01, -Vv'Au
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To find its inverse, it suffices to find its right inverse since M is a square matrix. Suppose

[Anxn Upx1 | | Brxn xnxl] I
= L(n+1)x(n+1)-
Vi 0 [yl ¢

Multiplying the elimination matrix (obtained from block Gaussian elimination above) on the left:

Insn 0% Anxn Upx Brxn  Xnx Lrxn, 0%
st - 1 1] _ s
y?xn & _VTAIin 1

—vT A7l 1 01xn, -viA™lu
We can easily compute the bottom row entries y? and ¢ (since the bottom-left entry of M is 0):

1xn

1
T 4-1 _ _
(-viA7u) c=1 = €=~ TA Iy and
T j=l
T -1 T T 4-1 r_ VA
vTA ) T = vTA = .
(-v u)-y v -y T ATn

Also, since Ax + cu =0 (top-right of RHS),

A lu
_ 71 _
x= AT e = oy

and since AB +uy” = I (top-left of RHS),

=1 T A-1
B=A"AB= A - AluyT -4 - AWV AT

vl A-1u
To sum up, the inverse of M is
A1 A luvT AL A lu
vT A-1u vT A-1u
via-t 1
vl A-1u vT A-1u
A

4.1.14 Let D be a matrix in partitioned form D = . Prove that if A - BC is nonsingular then so is D.

Proof. If A- BC is nonsingular then det(A - BC') # 0, and we want use this to prove det(D) # 0. Similar

to LU-decomposition (but with “reversed” order — eliminating backward), consider

1 -B|[a B] [A-BC o0

o I|lc 1 C Il

—_——————— —— —
U D L

Then det(U)det(D) = det(L) = det(A — BC'), where the last equality comes from the fact that Gaussian
elimination on L has no effect on the rightmost column, and a pivot 1 has no effect on det(L), so det(L) is
the same as the determinant of its top-left submaatrix, namely det(A—BC'). Therefore if det(A-BC') # 0,

we know det(D) # 0, i.e., D is nonsingular. O



