MATH 501 Problem Set 5

Qilin Ye

March 3, 2021

Pseudocode Programming

Doolittle’s Factorization:

@ @ Command Window

>> untitled ®
What is 'A' in Ax=b?[0.05,0.07,0.06,0.05;0.07,0.1,0.08,0.07;0.06,0.08,0.1,0.09;0.05,0.07,¢
What is 'b' in Ax=b?[0.23;0.32;0.33;0.31]

>> [L U]

ans =
1.0000 0 0 0 0.0500 0.0700 0.0600 0.0500
1.4000 1.0000 0 0 0 0.0020 -0.0040 [
1.2000 -2.0000 1.000b 0 0 0 0.0200 0.0300
1.0000 0 1.5000 1.0000 0 0 0 0.0050

>> transpose(x)

ans =
1.0000 1.0000 1.0000 1.0000

s> |
Cholesky’s Factorization:
@ @ Command Window

>> untitled ®

What is 'A' in Ax=b?[0.05,0.07,0.06,0.05;0.07,0.1,0.08,0.07;0.06,0.08,0.1,0.09;0.05,0.07,¢

What is 'b' in Ax=b?[0.23;0.32;0.33;0.31]

>> [L U]

ans =
0.2236 0 0 0 0.2236 0.3130 0.2683 0.2236
0.3130 0.0447 0 0 0 0.0447 -0.0894 -0.0000
0.2683 -0.0894 0.1414 0 0 0 0.1414 0.2121
0.2236 -0.0000 0.2121 0.0707 0 0 0 0.0707

>> transpose(x)
ans =

1.0000 1.0000 1.0000 1.0000
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input ("What is A in Ax=b?7");
size(A);

n(1);

input ("What is b in Ax=b?");

%Doolittle, solve A=LU

L =
U =

for

end

zeros(n);

zeros(n);

k = 1:n
L(k,k) = 1;
for j = k:n
A_kj_01d = A(k,j);
for s = 1:k-1
A_kj_01d = A_kj_01d - L(k,s) * U(s,j);
end
U(k,j) = A_kj_01d;

end

for i = k+l:n
A_ik_01d = A(i,k);
for s = 1:k-1
A_ik_01d = A_ik_01d - L(i,s) * U(s,k);
end
L(i,k) = A_ik_01d / U(k,k);

end

%Fwd substitution, solve Lz=b

z =

for

zeros(n,1);

i=1:n

b_i_01d = b(i);

for j = 1:i-1

b_i_01d = b_i_01d - L(i,j) * z(§);

end

z(i) = b_i_01d;

end

%Bwd substitution, solve Ux=z

x =

for

end

zeros(n,1);

i =0:n-1
z_i_01d = z(n-i);
for j = n+l-i:n
z_1_01d = z_i_01d - U(n-i,j) * x(j);
end

x(n-i) = z_i_01d / U(n-i,n-i);

clearvars -except ALUX b
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= input("What is A in Ax=b?");
= size(A);

=n(1);

= input("What is b in Ax=b?");

o B B =

%#Cholesky, solve A=LU

L = zeros(n);

for k = 1:n
a_kk_01d = A(k,k);
for s=1:k-1
a_kk_01d = a_kk_01d - L(k,s)"2;
end
L(k,k) = sqrt(a_kk_01d);

for i = k+1:n
a_ik_01d = A(i,k);
for s = 1:k-1
a_ik_01d = a_ik_01d - L(i,s) * L(k,s);
end
L(i,k) = a_ik_01d / L(k,k);
end

end

U = transpose(L);

%Fwd substitution, solve Lz=b

z = zeros(n,1);

for i=1:n
b_i_01d = b(i);
for j = 1:i-1
b_i_01d = b_i_01d - L(i,j) * z(j);
end
z(i) = b_i_01d / L(i,i);

end

%Bwd substitution, solve Ux=z

x = zeros(n,1);

for i = O:n-1
z_i_01d = z(n-i);
for j = n+l-i:n
z_i_01d = z_i_01d - U(n-i,j) * x(j);
end
x(n-i) = z_i_01d / U(n-i,n-i);

end

clearvars -except ALU X Db
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The entries of L' are given by the following for-

mula (and it is not hard to verify: start from the ' |A = input("What is the matrix?");

N}
[}

size(A);

columns or rows with least nonzero entries and grad- _ _
3 |B = zeros(n);

ually move on. I will omit the verification): s

5 |for j = 1:n
0 i< ol BGL = 1/ AGLD:;
1 7 for i = j+l:n
Lij =31/ L i=j B(i,j) = - sum(A(i,j:i-1).% B(j:i-1,1).) /

A(i,i) ;endend

i-1
I finally realized that I don’t need another for loop to describe something like z; < | b; — Z Qi T Jai;; all T needed
j=1
instead was a dot product, i.e.,

x(1) = b(i) - sum(A(i,1:i-1) .*x x(1:i-1).°) / A(i,1);

Anyway, the result is as follows:

[ ] @ Command Window

@

>> [A B]
ans =

Columns 1 through 10

4.0000 0 0 0 0 0 ] [ 0 0
9.0000 16.0000 0 0 0 0 0 ] 0 0
16.0000 25.0000 36.0000 0 0 0 ] ] 0 0
25.0000 36.0000 49.0000 64.0000 0 0 ] ] ] 0
36.0000 49.0000 64.0000 81.0000 100.0000 0 ] [ 0 0
49.0000 64.0000 81.0000 100.0000 121.0000 144.0000 0 ] 0 0
64.0000 81.0000 100.0000 121.0000 144.0000 169.0000 196.0000 ] 0 0
81.0000 100.0000 121.0000 144.0000 169.0000 196.0000 225.0000 256.0000 ] 0
100.0000 121.0000 144.0000 169.0000 196.0000 225.0000 256.0000 289.0000 324.0000 0
121.0000 144.0000 169.0000 196.0000 225.0000 256.0000 289.0000 324.0000 361.0000 400.0000

Columns 11 through 20

-0.0024 -0.0005 -0.0002 -0.0001 -0.0001 -0.0000 -0.0000 -0.0035 0.0031
-0.0021 -0.0004 -0.0002 -0.0001 -0.0001 -0.0000 -0.0000 -0.0000 -0.0028 0.002

0.2500 0 0 0 0 0 0 ] 0 0
-0.1406 0.0625 0 0 0 0 0 [ 0 0
-0.0135 -0.0434 0.0278 0 0 0 0 ] 0 0
-0.0083 -0.0019 -0.0213 0.0156 0 0 ] ] 0 0
-0.0058 -0.0013 -0.0006 -0.0127 0.0100 0 0 ] 0 0
-0.0044 -0.0009 -0.0004 -0.0002 -0.0084 0.0069 0 [ 0 0
-0.0035 -0.0007 -0.0003 -0.0002 -0.0001 -0.0060 0.0051 ] 0 0
-0.0029 -0.0006 -0.0002 -0.0001 -0.0001 -0.0001 -0.0045 0.0039 0 0

0
5

>> int64(A*B)
ans =

10x10 int64 matrix
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Textbook Problems

421 (a)

Recall the Gaussian-Jordan elimination.

up Uz o Ul |1
Uy -+ U2y 1
Unn, 1

If we apply it to an invertible upper triangular matrix, then we automatically begin with the back
substitution stage. For the matrix on the right, it is impossible for any entry below the diagonal to
become nonzero, as we are always one row by another row below it by definition of back substitution.
Therefore throughout the Gaussian-Jordan process, the right matrix remains upper triangular and that,

of course, includes the final step where U on the left becomes I and I on the right becomes U™*. O

Following a similar argument above it’s immediate that the Gaussian-Jordan elimination of an invertible
lower triangular matrix is lower triangular, so it suffices to show that, if L is unit lower triangular then
L7! has 1’s along its entries. Indeed, if LL™* = I, then looking at I;; (i.e., the diagonal entries of I) gives
n
kZlLikL;} =LyLi'=1 =— Lj'=1/Ly=1,

since all other terms of the summation become 0 because either k > i or k < ¢. The claim then follows. [
WLOG assume A, B are n xn upper triangular matrices (the lower-triangular case is highly analogous).
Suppose AB = C. It follows that
n
Cij =Y. AirBuj.
k=1
Notice that A;; = 0 when ¢ > k and By; = 0 when k > j. If ¢ > j then there is no k satisfying ¢ < k and

k < j, so each term A;;,By; is inevitably 0, i.e., Cy; = 0. Therefore C' is upper triangular. O

4.2.6 Suppose A is factorizable with

Ui Urs
Uso

0 1 L
A= _ |t
1 1 Loy Lo

Immediately we see that L11U;; = 0 so either Li; = 0 or Uy; = 0. If it is the former case then we have

a contradiction that Lq1U11 +0-Usy = A1o = 1, and if it’s latter case we have another contradiction that

L11U11 + Lot -0 = Ag1 = 0. Therefore A does not admit an LU-factorization.

4.2.16 Suppose A, xn = LU and is invertible. Immediately we see that L and U have no zero diagonal entry, so they

are invertible. Let Ay, Ly, U, be the kxk leading principal minors of these matrices, respectively. Immediately

we see that Ly, Uy have no zero diagonal entries so they are invertible. It remains to notice that Ay = LiUy:

Notice that

L1 Unn Uiz - U A A o Apg
L21 L22 U22 U2’n _ A21 A22 A2'n,
Lnl Ln2 Lnn Unn Anl An2 Ann
k min{,j}
Az] = Z leUmk = Z Lszmk
m=1 m=1
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so indeed the value of A;; is determined only by entries of Ly and Uj. Since L and Uy are both invertible,

Ay, also is, and the claim follows. O

4.2.22 For = : suppose A is symmetric, real, and positive definite. By the Cholesky Theorem A = LL”T for some
L with positive diagonal. Therefore the row vectors of L are linearly independent, and this is precisely the

set of vectors we are looking for.

For <=, suppose we have a set of linearly independent vectors. We can then form a matrix M whose row
vectors are these vectors. It follows that A = MTM. Then, A is positive definite because, for any = € R,
2T Az = 2" MTMx = (Mz)T (Mz) which equals 0 if and only if Mz = 0. If 27 Az = 0, since M is invertible

(because it has full row rank), we have Mx =0 == x =0. Hence A is positive definite. O

4.2.27 For = : if A is positive definite and B nonsignular, then 27 B is a nonzero vector for any nonzero vector

x. Then 2T BABz = (Bz)T A(Bz) > 0, as desired. (Of course if x =0 then 27 BABTz =0.)

For < : suppose BABT is nonsingular. Clearly B is nonsingular; otherwise for some nonzero = we have
Bz =0 and 2T BABTx = (Bz)T A(Bz) = 0, contradicting BABT’s positive definiteness. Once again, since B

is nonsingular, so is B”, and thus for any nonzero vector v there exists some y such that BTy = v. Then,
vl Av = (BTy)T A(BTy) =y" BAB Ty > 0.

Therefore A is positive definite. O

4.2.34 If A admits a Cholesky factorization, then det(A) = det(L)det(LT) = det(L)? for some nonsingular lower
triangular L. Hence det(A) > 0.

4.2.40 suppose A= LLT = MMT. First notice that the inverse of the transpose is the transpose of the inverse of a
matrix, should they exist, i.e., for nonsingular A we have (A7)~ = (A™1)T. For convenience we denote this

by A™T. Then

I=0'Li' L = MM LT = (LML M) = (L7*M) = (L)

Notice that L™'M is lower triangular (cf. problem 1) whereas (L™'M)~T is upper triangular! Therefore
they have to be diagonal matrices and since (L™'M)(L™'M)?T = I, the diagonal entries must be +1. Since
M = L(L™*M), one concludes that the entries of M differ from those of L by at most signs, but since we are

only looking at Cholesky factorization with positive diagonals, L = M, as claimed. O

0 -1

0
4.2.52 No. Consider
0 e-1

€
], clearly a symmetric matrix with minors 0 and 0. However, l l has determinant

€(e - 1) which is negative for small e. Therefore this property is not preserved.

4.2.54 If A is symmetric positive semidefinite, then |a;;| < \/a;;a;;: consider v € R™ with entries 0 with the exception
of v; =z and v; = 1. Then vT Av = ayx? + 2a,;x +a;; (aj; = a;; by symmetry). Since A is positive semidefinite,
this quadratic equation has at most one root and thus 2%‘23' < ai;a55 and |a;;] < V@iiaj;. Therefore, if a diagonal
element of A is zero, the corresponding row and column must also be 0, and we can simply skip the original
steps involved in Cholesky factorization. Other than that, carrying out the Cholesky factorization would still

give us A = LL”, the only difference being that L may have zero diagonal entries. O
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0

0
4.2.57 No. Consider again {
0 -1

l: nonnegative leading principal minors but not positive semidefinite:

]



