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Pseudocode Programming

Doolittle’s Factorization:

Cholesky’s Factorization:

1



MATH 501 Homework 5 YQL

1 A = input("What is A in Ax=b?");

2 n = size(A);

3 n = n(1);

4 b = input("What is b in Ax=b?");

5

6 %Doolittle, solve A=LU

7 L = zeros(n);

8 U = zeros(n);

9

10 for k = 1:n

11 L(k,k) = 1;

12 for j = k:n

13 A_kj_Old = A(k,j);

14 for s = 1:k-1

15 A_kj_Old = A_kj_Old - L(k,s) * U(s,j);

16 end

17 U(k,j) = A_kj_Old;

18 end

19

20 for i = k+1:n

21 A_ik_Old = A(i,k);

22 for s = 1:k-1

23 A_ik_Old = A_ik_Old - L(i,s) * U(s,k);

24 end

25 L(i,k) = A_ik_Old / U(k,k);

26 end

27 end

28

29

30 %Fwd substitution, solve Lz=b

31 z = zeros(n,1);

32

33 for i=1:n

34 b_i_Old = b(i);

35 for j = 1:i-1

36 b_i_Old = b_i_Old - L(i,j) * z(j);

37 end

38 z(i) = b_i_Old;

39 end

40

41 %Bwd substitution, solve Ux=z

42 x = zeros(n,1);

43

44 for i = 0:n-1

45 z_i_Old = z(n-i);

46 for j = n+1-i:n

47 z_i_Old = z_i_Old - U(n-i,j) * x(j);

48 end

49 x(n-i) = z_i_Old / U(n-i,n-i);

50 end

51

52 clearvars -except A L U x b

1 A = input("What is A in Ax=b?");

2 n = size(A);

3 n = n(1);

4 b = input("What is b in Ax=b?");

5

6 %Cholesky, solve A=LU

7 L = zeros(n);

8

9 for k = 1:n

10 a_kk_Old = A(k,k);

11 for s=1:k-1

12 a_kk_Old = a_kk_Old - L(k,s)^2;

13 end

14 L(k,k) = sqrt(a_kk_Old);

15

16 for i = k+1:n

17 a_ik_Old = A(i,k);

18 for s = 1:k-1

19 a_ik_Old = a_ik_Old - L(i,s) * L(k,s);

20 end

21 L(i,k) = a_ik_Old / L(k,k);

22 end

23 end

24

25 U = transpose(L);

26

27 %Fwd substitution, solve Lz=b

28 z = zeros(n,1);

29

30 for i=1:n

31 b_i_Old = b(i);

32 for j = 1:i-1

33 b_i_Old = b_i_Old - L(i,j) * z(j);

34 end

35 z(i) = b_i_Old / L(i,i);

36 end

37

38 %Bwd substitution, solve Ux=z

39 x = zeros(n,1);

40

41 for i = 0:n-1

42 z_i_Old = z(n-i);

43 for j = n+1-i:n

44 z_i_Old = z_i_Old - U(n-i,j) * x(j);

45 end

46 x(n-i) = z_i_Old / U(n-i,n-i);

47 end

48

49 clearvars -except A L U x b
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The entries of L−1 are given by the following for-

mula (and it is not hard to verify: start from the

columns or rows with least nonzero entries and grad-

ually move on. I will omit the verification):

L−1ij =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 i < j

1/Lii i = j

−[∑
i−1
k=j LikL

−1
kj ] /Lii i > j.

1 A = input("What is the matrix?");

2 n = size(A);

3 B = zeros(n);

4

5 for j = 1:n

6 B(j,j) = 1 / A(j,j);

7 for i = j+1:n

8 B(i,j) = - sum(A(i,j:i-1).* B(j:i-1,j).) /
A(i,i);endend

I finally realized that I don’t need another for loop to describe something like xi ←
⎛

⎝
bi −

i−1
∑
j=1

aijxj
⎞

⎠
/aii; all I needed

instead was a dot product, i.e.,

x(i) = b(i) - sum(A(i,1:i-1) .* x(1:i-1).’) / A(i,i);

Anyway, the result is as follows:
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Textbook Problems

4.2.1 (a) Recall the Gaussian-Jordan elimination.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u11 u12 ⋯ u1n 1

u22 ⋯ u2n 1

⋱ ⋮ ⋱

unn 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If we apply it to an invertible upper triangular matrix, then we automatically begin with the back

substitution stage. For the matrix on the right, it is impossible for any entry below the diagonal to

become nonzero, as we are always one row by another row below it by definition of back substitution.

Therefore throughout the Gaussian-Jordan process, the right matrix remains upper triangular and that,

of course, includes the final step where U on the left becomes I and I on the right becomes U−1.

(b) Following a similar argument above it’s immediate that the Gaussian-Jordan elimination of an invertible

lower triangular matrix is lower triangular, so it suffices to show that, if L is unit lower triangular then

L−1 has 1’s along its entries. Indeed, if LL−1 = I, then looking at Iii (i.e., the diagonal entries of I) gives
n

∑
k=1

LikL
−1
ki = LiiL

−1
ii = 1 Ô⇒ L−1ii = 1/Lii = 1,

since all other terms of the summation become 0 because either k > i or k < i. The claim then follows.

(c) WLOG assume A,B are n×n upper triangular matrices (the lower-triangular case is highly analogous).

Suppose AB = C. It follows that

Cij =
n

∑
k=1

AikBkj .

Notice that Aik = 0 when i > k and Bkj = 0 when k > j. If i > j then there is no k satisfying i ⩽ k and

k ⩽ j, so each term AikBkj is inevitably 0, i.e., Cij = 0. Therefore C is upper triangular.

4.2.6 Suppose A is factorizable with

A =

⎡
⎢
⎢
⎢
⎢
⎣

0 1

1 1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

L11

L21 L22

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

U11 U12

U22

⎤
⎥
⎥
⎥
⎥
⎦

.

Immediately we see that L11U11 = 0 so either L11 = 0 or U11 = 0. If it is the former case then we have

a contradiction that L11U11 + 0 ⋅ U22 = A12 = 1, and if it’s latter case we have another contradiction that

L11U11 +L21 ⋅ 0 = A21 = 0. Therefore A does not admit an LU -factorization.

4.2.16 Suppose An×n = LU and is invertible. Immediately we see that L and U have no zero diagonal entry, so they

are invertible. Let Ak, Lk, Uk be the k×k leading principal minors of these matrices, respectively. Immediately

we see that Lk, Uk have no zero diagonal entries so they are invertible. It remains to notice that Ak = LkUk:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11

L21 L22

⋮ ⋮ ⋱

Ln1 Ln2 ⋯ Lnn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U11 U12 ⋯ U1n

U22 ⋯ U2n

⋱ ⋯

Unn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 ⋯ Ann

A21 A22 ⋯ A2n

⋮ ⋮ ⋱ ⋮

An1 An2 ⋯ Ann

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Notice that

Aij =
k

∑
m=1

LimUmk =

min{i,j}
∑
m=1

LimUmk
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so indeed the value of Aij is determined only by entries of Lk and Uk. Since Lk and Uk are both invertible,

Ak also is, and the claim follows.

4.2.22 For Ô⇒ : suppose A is symmetric, real, and positive definite. By the Cholesky Theorem A = LLT for some

L with positive diagonal. Therefore the row vectors of L are linearly independent, and this is precisely the

set of vectors we are looking for.

For ⇐Ô , suppose we have a set of linearly independent vectors. We can then form a matrix M whose row

vectors are these vectors. It follows that A = MTM . Then, A is positive definite because, for any x ∈ Rn,

xTAx = xTMTMx = (Mx)T (Mx) which equals 0 if and only if Mx = 0. If xTAx = 0, since M is invertible

(because it has full row rank), we have Mx = 0 Ô⇒ x = 0. Hence A is positive definite.

4.2.27 For Ô⇒ : if A is positive definite and B nonsignular, then xTB is a nonzero vector for any nonzero vector

x. Then xTBABx = (Bx)TA(Bx) > 0, as desired. (Of course if x = 0 then xTBABTx = 0.)

For ⇐Ô : suppose BABT is nonsingular. Clearly B is nonsingular; otherwise for some nonzero x we have

Bx = 0 and xTBABTx = (Bx)TA(Bx) = 0, contradicting BABT ’s positive definiteness. Once again, since B

is nonsingular, so is BT , and thus for any nonzero vector v there exists some y such that BT y = v. Then,

vTAv = (BT y)TA(BT y) = yTBABT y > 0.

Therefore A is positive definite.

4.2.34 If A admits a Cholesky factorization, then det(A) = det(L)det(LT ) = det(L)2 for some nonsingular lower

triangular L. Hence det(A) > 0.

4.2.40 suppose A = LLT =MMT . First notice that the inverse of the transpose is the transpose of the inverse of a

matrix, should they exist, i.e., for nonsingular A we have (AT )−1 = (A−1)T . For convenience we denote this

by A−T . Then

I = L−1LLTL−T = L−1MMTL−T = (L−1M)(L−1M)
T
Ô⇒ (L−1M) = (L−1M)

−T .

Notice that L−1M is lower triangular (cf. problem 1) whereas (L−1M)−T is upper triangular! Therefore

they have to be diagonal matrices and since (L−1M)(L−1M)T = I, the diagonal entries must be ±1. Since

M = L(L−1M), one concludes that the entries of M differ from those of L by at most signs, but since we are

only looking at Cholesky factorization with positive diagonals, L =M , as claimed.

4.2.52 No. Consider
⎡
⎢
⎢
⎢
⎢
⎣

0 0

0 −1

⎤
⎥
⎥
⎥
⎥
⎦

, clearly a symmetric matrix with minors 0 and 0. However,
⎡
⎢
⎢
⎢
⎢
⎣

ε 0

0 ε − 1

⎤
⎥
⎥
⎥
⎥
⎦

has determinant

ε(ε − 1) which is negative for small ε. Therefore this property is not preserved.

4.2.54 If A is symmetric positive semidefinite, then ∣aij ∣ ⩽
√
aiiajj : consider v ∈ Rn with entries 0 with the exception

of vi = x and vj = 1. Then vTAv = aiix2 +2aijx+ajj (aji = aij by symmetry). Since A is positive semidefinite,

this quadratic equation has at most one root and thus 2a2ij ⩽ aiiajj and ∣aij ∣ ⩽
√
aiiajj . Therefore, if a diagonal

element of A is zero, the corresponding row and column must also be 0, and we can simply skip the original

steps involved in Cholesky factorization. Other than that, carrying out the Cholesky factorization would still

give us A = LLT , the only difference being that L may have zero diagonal entries.
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4.2.57 No. Consider again
⎡
⎢
⎢
⎢
⎢
⎣

0 0

0 −1

⎤
⎥
⎥
⎥
⎥
⎦

: nonnegative leading principal minors but not positive semidefinite:

⎡
⎢
⎢
⎢
⎢
⎣

a

b

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0 0

0 −1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

a

b

⎤
⎥
⎥
⎥
⎥
⎦

= −b2 ⩽ 0.
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