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Pseudocode Implementation

%Naive Gaussian

input ("Enter matrix A here: ");

input ("Enter b here: ");

B T =
n

size(A);
n =n(l);

for k = 1:n-1

for i = k+l:n
z = A(i,k) / A(k,k);
A(i,k) = 0;
b(i) = b(i) - z * b(k);
for j = k+1l:n

AGi,j) = A(L,j) - z * A(k,j);

end

end

end

%Bwd substitution

x = zeros(n,1);

for i = 1:n
inew = n+1-i;
x(inew) = b(inew) - A(inew,inew+1:n) *
x(inew+1:n);
x(inew) = x(inew) / A(inew,inew);

end

disp("x = ");
disp(x);

Output of problem 4.3.22:

@® Command Window
untitled

Enter matrix A here: [0.2641,0.1735,0.8642; 0.9411,0.0175,0.1463; -0.8641,-0.4243,0.0711]

er 'b' here: [-0.7521; 0.6310; 0.2501]

0.8148
-2.3570
-0.6461

®

%Gaussian with scaled pivoting
A = input("Enter matrix A here: ");
b = input("Enter b here: ");
n = size(A);
n =n(1);
p = zeros(n,1);
s = zeros(n,1);
for i = 1:n
p(i) = i;
s(i) = max(abs(A(i,1:n)));
end
for k = 1:n-1
[M,I] = max( abs(A(p(k:n),k)) ./ s(p(k:n)) );
=1+ k-1;
[px),p(§)] = swap(p(k),p(j));
for i = k+l:n
z = A(p(i),k) / A(p(k),k);
A(p(i),k) = z;
for 1 = k+1l:n
A(p(i),1) = A(p(D),1) - z * A(p(k),1);
end
b(p(i)) = b(p(i)) - A(p(i),k) * b(p(k));
end
end
x = zeros(n,1);
for i = 1:n
inew = n+1-i;
x(inew) = b(p(inew)) - A(p(inew),inew+1:n) *
x(inew+1:n);
x(inew) = x(inew) / A(p(inew),inew);
end
disp("x = ");
disp(x);
function [b, al = swap(a, b)
end
Output of problem 4.3.22:
XX ) Command Window
>> untitled G
EE:E: l!\:?r;:rl;he[i‘;75[21?621é21;?3;,2532?2, 0.9411,0.0175,0.1463; -0.8641,-0.4243,0.0711]
X =
0.8148
Toooaen
£z >> |
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Textbook Problems
4.3.1 (a) Naive Gaussian elimination:
-1 1 -4 1 0 OJf-1 1 -4 1 0 Oof|l-1 1 4
2 2 0|=]-2 1 0|0 4 -8]|=|-2 1 0|0 4 -8
3 3 2 -3 0 0ffo 6 -10 -3 1.5 1f[0o 0 2
1 0 o]f=] [o
Solving [-2 1 Of|z2[=] 1 | gives 21 =0,29 =1, and 23 = —1. Then
3 15 1f|zs] |05
-1 a[z] [o | [125
0 4 -8l|lzz|=|1] = |a2]|=]-0.75
[0 0 2][zs] [ zs] | -05
Pivoted Gaussian elimination:
01 0ff[-1 1 4] [1 o o][2 2 o
1 0 02 2 0|=|-05 1 0O 2 -4
0 0 1|3 3 2] 1.5 0 1]{0 0 2
To solve Az = b, write A= P"'LU. We solve LUx = Pb.
1 0 o][x] [1 4| [1
-0.5 1 0f]z2|=| 0| = [22|=]10.5].
15 0 1||z| los 2] | -1
Then, Ux = z gives
2 0= 1 T 1.25
2 —4|lxze|=105] = |x2|=|-0.75].
00 2[|las] [-1 zs| [ -0.5
(b) Naive Gaussian elimination:
1 6 ol [t oo]ft 6 o]
2 1 =12 1 0f]0 -11 O
02 1] [0 o 1flo 2 1]
(1 0o ol[t 6 o0
=12 1 0ofjo -11 0
| 0 -2/11 1{[0 0 1
10 ol|[a] [3 2 3
To solve the original system, we begin by solving |2 1 Of[z|=11| = |2 -5 |. Then,
0 -2/11 1 | 23 1 23 1/11
1 6 0ffx 3 x| [3/11
0 -11 Ol]zz|=] -5 | = |z2|=]5/11
0 0 1f[lzs] [1/11 x| [1/11
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Pivoted Gaussian elimination:

0 1 0|1 6 O 1 0 0|12 1 0O
1 0 0f|2 1 o]={1/2 1 0|0 11/2 O
0 0 1]10 2 1f [0 O 1fj0 2 1
(1 0 o]f2 1 o0
=11/2 1 0|0 11/2 0]
| 0 4/11 1110 0 1
10 o]f=a] [t A [ 1
Again we begin by solving | 1/2 1 0|{22]=[3] = |22|=]|5/2 | Then,
0 4/11 1||=zs 1 z3| | 1/11
2 1 0ff|x 1 1 3/11
0 11/2 0||z2|=]|5/2 | = |x2|=|5/11]-
0 0 1f|as| [1/11 zs| |1/11

4.3.3 Let 0 = (p1,p2,---,pn) be a permutation.

(1) PA permutes the rows of A according to o, i.e., the n'® row of A becomes the pi of PA.
(2) AP = (PTATYT = (P71AT)T permutes the columns of A according to o~! (since PT = P~! as shown
below), i.e., the pi* column of A becomes the n'® of AP.

(3) P7lis simply PT: (PPT)M = Z Pi_’kPkij = Z P; 1P}, = 9, ; (the Kronecker 9).
k=1 k=1

(4) PA first permutes the rows of A according to 0. Then the columns of PA is permuted according to o

by P~ (since right multiplication of P permutes the columns by ¢7'). Hence (PAP™"); ;= A, ..

4.3.14 Let A be an n xn tridiagonal matrix. To solve Az = b, we first need to eliminate all the subdiagonal entries.
As suggested by the text, eliminating one entry requires 3 ops: one to determine the factor, one to determine
how the corresponding diagonal entry changes, and one to determine how the corresponding entry in b changes.
After these 3(n—1) ops, we are left with a bidiagonal, upper-triangular matrix and Az =b. Performing back
substitution, for each x, we need to calculate the product of the superdiagonal entry (A n+1) with 2,41
(which we already know by the time we get to z,) and factorized quotient (l;n - Apn+1%n+1)/An n, hence
another 2(n - 1) ops. To sum up, we require approximately 3(n —1) ops in elimination phase and 2(n—1) in

back substitution phrase, which add up a total of 5(n—1) = O(n) ops.

1 -1||ze| |-1

S

-1-2/e
-1-4/e
1’s will no longer appear in the mantissa and thus x5 = 1/2 and z1 = (4 - 223)/e >3-

e 2 ||z 4
4.3.20 We want to solve l ] l 1] = [ ] Eliminating the bottom-left entry gives

MARC-32 will first try to solve the equation zs = . If € < 2722 then 2/e > 223 and 4/e > 2**. The original

223 causing an overflow.
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4.3.33 Notice that if p: J — J is subjective the it must be injective, since otherwise a # b but p(a) = p(b) implies
that p has to map the remaining n — 2 elements in the domain to n — 1 elements in the codomain, which is

absurd. Thus a permutation is not only a surjection but also a bijection.

Clearly, if p,q: J — J are bijections, then so is their composition, and thus p o g is another permutation. The
associativity is guaranteed as part of the properties of function compositions. For the identity, for all 1 <z <n

we have

(pou)(z) = p(u(x)) = p(z) = u(p(x)) = (uop)(@).

4.3.34 Let p be an arbitrary permutation and define p; := p(i). By above p is bijective and thus admits an inverse,
which we call p~!. Then the properties pop™ = u = p~! o p is immediate by the definition of an inverse of a

bijective map.

4.3.56 It is true! Since one can inductively show the remaining steps after showing the preservation of diagonal

dominance from A to A®) | it suffices to show how it is preserved in the first step, namely

a21
g — Q14 ——

Toan

>3

=3

a1
a22 —A12* ——
a11

)

which, by multiplying a1; on both sides, is equivalent to showing

n
lagoa11 — arzas1] > Y lazia11 — a1 5a21).

i=3
Indeed,
n n n
Z|a2,i&11 - al,ia21| < Z|(12,ia11| + Z|(11,i¢121|
i=3 i=3 i=3
n n
< la] Z|a2,i| + |agi]| Z|a1,i|
i=3 i=3
<lari|(lazz| - laz1]) + |az1|(la11] - |a1z])
= |a11laze| - |az1la1z]
= |011022| + |azla12|
< laiiaaz — az1aial.
Therefore the claim follows. O
4.3.57

(a) Ibelieve (n—1)(n!) correspond to the “big formula”, not expansion by minors. Anyway, there are n! ways
to permute {1,...,n} to {p1,...,pn}, and then when calculating the product a1 p, a2 p, - .. an,p, there are

n — 1 multiplications involved. Therefore n! terms, each with n—1 ops, give us a total of (n-1)(n!) ops.

(b) Besides computing the determinant of A, we need to compute n more determinants, each corresponding

to one component of z, hence the total (n +1)(n —1)(n!) = (n? —=1)(n!) ops.

(¢) To carry out the Gauss-Jordan elimination, we first write the matrix in augmented form [A | b]. Then

we scale the first row so that aj; = 1, after which we eliminate other entries of form a; ;. After we are

4
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done with the (n—1)*® column we proceed to set a,_, = 1 and eliminate other entries on the n'" column.

I /
aill a2 A1n b1 1 a9 QA1n bl
as1 a2 et A2n bQ (n-1)+1 ops * * * *

_
ap1 Ap2 -+ Apn | * * * *
1 = * *
n(n-1) ops 0 (1./_)._) (1,./2” ]);
_—
/ / ’
L 0 an2 Ann [)n
_ ;T
1 0 * 1
(n-n)+1 ops 0 1 * ,2
_
*
| 0 0 1 (b ]
1 0 0 | by
1:(n-1) ops 0 1 0 b
_
0
0o 0 - 1 |b, |

When dealing with the n*® column, we first need n — 1 + 1 divisions to scale n'® row (setting a,, = 1
saves one ops but the augmented b,, requires an extra ops). Then we eliminate all other entries in the

n't column (as marked red above) and compute n(n — 1) ops to all the remaining nonzero entries. The

total amount of ops required by doing so is

indeed 50% more expensive than Gaussian elimination’s n3/3.



