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Pseudocode Implementation

1 %Naive Gaussian
2

3 A = input("Enter matrix A here: ");
4 b = input("Enter b here: ");
5 n = size(A);
6 n = n(1);
7

8 for k = 1:n-1
9 for i = k+1:n

10 z = A(i,k) / A(k,k);
11 A(i,k) = 0;
12 b(i) = b(i) - z * b(k);
13 for j = k+1:n
14 A(i,j) = A(i,j) - z * A(k,j);
15 end
16 end
17 end
18

19 %Bwd substitution
20 x = zeros(n,1);
21

22 for i = 1:n
23 inew = n+1-i;
24 x(inew) = b(inew) - A(inew,inew+1:n) *

x(inew+1:n);
25 x(inew) = x(inew) / A(inew,inew);
26 end
27

28 disp("x = ");
29 disp(x);

Output of problem 4.3.22:

1 %Gaussian with scaled pivoting
2

3 A = input("Enter matrix A here: ");
4 b = input("Enter b here: ");
5 n = size(A);
6 n = n(1);
7 p = zeros(n,1);
8 s = zeros(n,1);
9 for i = 1:n

10 p(i) = i;
11 s(i) = max(abs(A(i,1:n)));
12 end
13

14 for k = 1:n-1
15 [M,I] = max( abs(A(p(k:n),k)) ./ s(p(k:n)) );
16 j = I + k-1;
17 [p(k),p(j)] = swap(p(k),p(j));
18 for i = k+1:n
19 z = A(p(i),k) / A(p(k),k);
20 A(p(i),k) = z;
21 for l = k+1:n
22 A(p(i),l) = A(p(i),l) - z * A(p(k),l);
23 end
24 b(p(i)) = b(p(i)) - A(p(i),k) * b(p(k));
25 end
26 end
27

28 x = zeros(n,1);
29 for i = 1:n
30 inew = n+1-i;
31 x(inew) = b(p(inew)) - A(p(inew),inew+1:n) *

x(inew+1:n);
32 x(inew) = x(inew) / A(p(inew),inew);
33 end
34

35 disp("x = ");
36 disp(x);
37

38 function [b, a] = swap(a, b)
39 end

Output of problem 4.3.22:
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Textbook Problems

4.3.1 (a) Naive Gaussian elimination:
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −4
2 2 0

3 3 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−2 1 0

−3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −4
0 4 −8
0 6 −10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−2 1 0

−3 1.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 4

0 4 −8
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Solving

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−2 1 0

3 1.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
gives z1 = 0, z2 = 1, and z3 = −1. Then

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 4

0 4 −8
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.25

−0.75
−0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Pivoted Gaussian elimination:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −4
2 2 0

3 3 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−0.5 1 0

1.5 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 0

0 2 −4
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
To solve Ax = b, write A = P −1LU . We solve LUx = Pb.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−0.5 1 0

1.5 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0.5

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, Ux = z gives ⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 0

0 2 −4
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0.5

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.25

−0.75
−0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(b) Naive Gaussian elimination:
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 6 0

2 1 0

0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

2 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 6 0

0 −11 0

0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

2 1 0

0 −2/11 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 6 0

0 −11 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To solve the original system, we begin by solving

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

2 1 0

0 −2/11 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3

−5
1/11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. Then,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 6 0

0 −11 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3

−5
1/11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3/11
5/11
1/11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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Pivoted Gaussian elimination:
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 6 0

2 1 0

0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1/2 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0

0 11/2 0

0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1/2 1 0

0 4/11 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0

0 11/2 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Again we begin by solving

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1/2 1 0

0 4/11 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

5/2
1/11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. Then,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0

0 11/2 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

5/2
1/11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3/11
5/11
1/11

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

4.3.3 Let σ = (p1, p2, . . . , pn) be a permutation.

(1) PA permutes the rows of A according to σ, i.e., the nth row of A becomes the pth
n of PA.

(2) AP = (PTAT )T = (P −1AT )T permutes the columns of A according to σ−1 (since PT = P −1, as shown
below), i.e., the pth

i column of A becomes the nth of AP .

(3) P −1 is simply PT : (PPT )i,j = n∑
k=1

Pi,kP
T
k,j = n∑

k=1
Pi,kPj,k = δi,j (the Kronecker δ).

(4) PA first permutes the rows of A according to σ. Then the columns of PA is permuted according to σ

by P −1 (since right multiplication of P permutes the columns by σ−1). Hence (PAP −1)i,j = Api,pj .

4.3.14 Let A be an n×n tridiagonal matrix. To solve Ax = b, we first need to eliminate all the subdiagonal entries.
As suggested by the text, eliminating one entry requires 3 ops: one to determine the factor, one to determine
how the corresponding diagonal entry changes, and one to determine how the corresponding entry in b changes.
After these 3(n − 1) ops, we are left with a bidiagonal, upper-triangular matrix and Ãx = b̃. Performing back
substitution, for each xn we need to calculate the product of the superdiagonal entry (An,n+1) with xn+1
(which we already know by the time we get to xn) and factorized quotient (b̃n − An,n+1xn+1)/An,n, hence
another 2(n − 1) ops. To sum up, we require approximately 3(n − 1) ops in elimination phase and 2(n − 1) in
back substitution phrase, which add up a total of 5(n − 1) = O(n) ops.

4.3.20 We want to solve
⎡⎢⎢⎢⎢⎣
ε 2

1 −1
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1

x2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
4

−1
⎤⎥⎥⎥⎥⎦. Eliminating the bottom-left entry gives

⎡⎢⎢⎢⎢⎣
ε 2

0 −1 − 2/ε
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1

x2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

4

−1 − 4/ε
⎤⎥⎥⎥⎥⎦ .

MARC-32 will first try to solve the equation x2 = −1 − 2/ε−1 − 4/ε . If ε < 2−22 then 2/ε > 223 and 4/ε > 224. The original

1’s will no longer appear in the mantissa and thus x2 = 1/2 and x1 = (4 − 2x2)/ε > 3 ⋅ 223, causing an overflow.
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4.3.33 Notice that if p ∶ J → J is subjective the it must be injective, since otherwise a ≠ b but p(a) = p(b) implies
that p has to map the remaining n − 2 elements in the domain to n − 1 elements in the codomain, which is
absurd. Thus a permutation is not only a surjection but also a bijection.

Clearly, if p, q ∶ J → J are bijections, then so is their composition, and thus p ○ q is another permutation. The
associativity is guaranteed as part of the properties of function compositions. For the identity, for all 1 ⩽ x ⩽ n
we have

(p ○ u)(x) = p(u(x)) = p(x) = u(p(x)) = (u ○ p)(x).
4.3.34 Let p be an arbitrary permutation and define pi ∶= p(i). By above p is bijective and thus admits an inverse,

which we call p−1. Then the properties p ○ p−1 = u = p−1 ○ p is immediate by the definition of an inverse of a
bijective map.

4.3.56 It is true! Since one can inductively show the remaining steps after showing the preservation of diagonal
dominance from A(1) to A(2), it suffices to show how it is preserved in the first step, namely

∣a22 − a12 ⋅ a21
a11
∣ ⩾ n∑

i=3
∣a2,i − a1,i ⋅ a21

a11
∣,

which, by multiplying a11 on both sides, is equivalent to showing

∣a22a11 − a12a21∣ ⩾ n∑
i=3
∣a2,ia11 − a1,ia21∣.

Indeed,
n∑
i=3
∣a2,ia11 − a1,ia21∣ ⩽ n∑

i=3
∣a2,ia11∣ + n∑

i=3
∣a1,ia21∣

⩽ ∣a11∣ n∑
i=3
∣a2,i∣ + ∣a21∣ n∑

i=3
∣a1,i∣

⩽ ∣a11∣(∣a22∣ − ∣a21∣) + ∣a21∣(∣a11∣ − ∣a12∣)
= ∣a11∣∣a22∣ − ∣a21∣∣a12∣
= ∣a11a22∣ + ∣a21a12∣
⩽ ∣a11a22 − a21a12∣.

Therefore the claim follows.

4.3.57

(a) I believe (n−1)(n!) correspond to the “big formula”, not expansion by minors. Anyway, there are n! ways
to permute {1, . . . , n} to {p1, . . . , pn}, and then when calculating the product a1,p1a2,p2 . . . an,pn there are
n− 1 multiplications involved. Therefore n! terms, each with n− 1 ops, give us a total of (n− 1)(n!) ops.

(b) Besides computing the determinant of A, we need to compute n more determinants, each corresponding
to one component of x, hence the total (n + 1)(n − 1)(n!) = (n2 − 1)(n!) ops.

(c) To carry out the Gauss-Jordan elimination, we first write the matrix in augmented form [A ∣ b]. Then
we scale the first row so that a11 = 1, after which we eliminate other entries of form a1,i. After we are

4
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done with the (n−1)th column we proceed to set an,n = 1 and eliminate other entries on the nth column.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n b1

a21 a22 ⋯ a2n b2

⋮ ⋮ ⋱ ⋮ ⋮
an1 an2 ⋯ ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n−1)+1 ops$$$$$$$→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a′12 ⋯ a1n b′1
∗ ∗ ⋯ ∗ ∗
⋮ ⋮ ⋱ ⋮ ⋮
∗ ∗ ⋯ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n(n−1) ops$$$$$$$→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ⋯ ∗ ∗
0 a′22 ⋯ a′2n b′2
⋮ ⋮ ⋱ ⋮ ⋮
0 a′n2 ⋯ a′nn b′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋮

(n−n)+1 ops$$$$$$$→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ ∗ b′1
0 1 ⋯ ∗ b′2
⋮ ⋮ ⋱ ∗ ⋮
0 0 ⋯ 1 b′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1⋅(n−1) ops$$$$$$$→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 b̃1

0 1 ⋯ 0 b̃2

⋮ ⋮ ⋱ 0 ⋮
0 0 ⋯ 1 b̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

When dealing with the nth column, we first need n − 1 + 1 divisions to scale nth row (setting ann = 1

saves one ops but the augmented bn requires an extra ops). Then we eliminate all other entries in the
nth column (as marked red above) and compute n(n − 1) ops to all the remaining nonzero entries. The
total amount of ops required by doing so is

1∑
k=n

k + 1∑
k=n

k(n − 1) = n2(n + 1)
2

≈ n3

2
,

indeed 50% more expensive than Gaussian elimination’s n3/3.
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